
COMP Superscalar

Installation Manual

Version: 2.0

January 18, 2017

This manual only provides information about how to install and configure COMPSs.
Specifically, it details the installation process for Debian based distributions and for Red-
Hat based distributions, and the steps to configure COMPSs properly.

If you are not wondering to install COMPSs please consider using our already pre-
pared Virtual Machine available at our webpage: http://compss.bsc.es .

For further information about the application execution please refer to the COMPSs
User Manual: Application execution guide available at http://compss.bsc.es/releases/
compss/latest/docs/COMPSs_User_Manual_App_Exec.pdf .

For further information about the application development please refer to the COMPSs
User Manual: Application development guide available at http://compss.bsc.es/ .

For full COMPSs application examples (codes, execution commands, results, logs,
etc.) please refer to the COMPSs Sample Applications available at http://compss.bsc.
es/releases/compss/latest/docs/COMPSs_User_Manual_App_Development.pdf .

i

http://compss.bsc.es
http://compss.bsc.es/releases/compss/latest/docs/COMPSs_User_Manual_App_Exec.pdf
http://compss.bsc.es/releases/compss/latest/docs/COMPSs_User_Manual_App_Exec.pdf
http://compss.bsc.es/
http://compss.bsc.es/releases/compss/latest/docs/COMPSs_User_Manual_App_Development.pdf
http://compss.bsc.es/releases/compss/latest/docs/COMPSs_User_Manual_App_Development.pdf

Contents

1 COMP Superscalar (COMPSs) 1

2 Packages description 2
2.1 Packages structure . 2
2.2 Packages Dependencies . 3

3 Debian-based distributions 4
3.1 Prerequisites . 4
3.2 Package Repository . 4
3.3 Installation . 4
3.4 Post installation . 7

4 RedHat-based distributions (zypper) 8
4.1 Prerequisites . 8
4.2 Package Repository . 8
4.3 Installation . 8
4.4 Post installation . 10

5 RedHat-based distributions (yum) 12
5.1 Prerequisites . 12
5.2 Package Repository . 12
5.3 Installation . 12
5.4 Post installation . 14

6 Supercomputers 15
6.1 Prerequisites . 15
6.2 Installation . 15
6.3 Configuration . 16
6.4 Post installation . 17

7 Pip 21
7.1 Prerequisites . 21
7.2 Installation . 22
7.3 Configuration . 22
7.4 Post installation . 23

8 Additional Configuration 24
8.1 Configure SSH passwordless . 24
8.2 Configure the COMPSs Cloud Connectors 25

8.2.1 OCCI (Open Cloud Computing Interface) connector 25

9 COMPSs Removal 26
9.1 How to uninstall or remove COMPSs . 26
9.2 How to clean repositories . 26

ii

1 COMP Superscalar (COMPSs)

COMP Superscalar (COMPSs) is a programming model which aims to ease the develop-
ment of applications for distributed infrastructures, such as Clusters, Grids and Clouds.
COMP Superscalar also features a runtime system that exploits the inherent parallelism
of applications at execution time.

For the sake of programming productivity, the COMPSs model has four key charac-
teristics:

• Sequential programming: COMPSs programmers do not need to deal with the
typical duties of parallelization and distribution, such as thread creation and syn-
chronization, data distribution, messaging or fault tolerance. Instead, the model
is based on sequential programming, which makes it appealing to users that either
lack parallel programming expertise or are looking for better programmability.

• Infrastructure unaware: COMPSs offers a model that abstracts the application
from the underlying distributed infrastructure. Hence, COMPSs programs do not
include any detail that could tie them to a particular platform, like deployment or
resource management. This makes applications portable between infrastructures
with diverse characteristics.

• Standard programming languages: COMPSs is based on the popular program-
ming language Java, but also offers language bindings for Python and C/C++ ap-
plications. This facilitates the learning of the model, since programmers can reuse
most of their previous knowledge.

• No APIs: In the case of COMPSs applications in Java, the model does not require
to use any special API call, pragma or construct in the application; everything is
pure standard Java syntax and libraries. With regard the Python and C/C++
bindings, a small set of API calls should be used on the COMPSs applications.

1

2 Packages description

2.1 Packages structure

Despite the fact that we recommend users to install the complete COMPSs Framework,
we have built different packages to allow users customize as maximum as possible their
installation. Figure 1 illustrates the COMPSs packaging structure and its internal depen-
dencies.

Figure 1: COMPSs packaging structure

2

2.2 Packages Dependencies

Next we provide a list of dependencies for each COMPSs package. The exact names may
vary depending on the Linux distribution but this list provides a general overview of the
COMPSs dependencies. For specific information about your distribution please check the
Depends section at your package manager (apt, yum, zypper, etc.).

COMPSs Framework compss-runtime, compss-bindings, compss-tools,
compss-cloud

COMPSs Runtime compss-engine, compss-worker

COMPSs Engine openjdk-8-jre, graphviz, xdg-utils

COMPSs Worker openjdk-8-jre

COMPSs Bindings compss-bindings-common, compss-c-binding, compss-
python-binding

COMPSs Bindings Common compss-engine, libtool, automake, build-essential

COMPSs Python Binding compss-bindings-common, python (>= 2.7),
libpython2.7

COMPSs C/C++ Binding compss-binding-common, libboost-serialization-dev,
libboost-iostreams-dev, libxml2-dev, csh

COMPSs Tools compss-extrae, compss-monitor

COMPSs Extrae compss-engine, libxml2 (>= 2.5), libxml2-dev (>= 2.5),
gfortran, papi

COMPSs Monitor compss-engine

COMPSs Cloud compss-engine

3

3 Debian-based distributions

3.1 Prerequisites

The commands described on the following sections require root privileges and Internet
connection.

Once the installation process is finished, please log out and back in again to complete
the installation.

3.2 Package Repository

To add the package repository you can easily download our predefined lists by executing
the following command:

ubuntu x86_64 :

wget http://compss.bsc.es/releases/repofiles/repo_deb_ubuntu_x86-64.list -O /etc/apt/sources.list.d/

compss-framework_x86-64.list

ubuntu noarch :

wget http://compss.bsc.es/releases/repofiles/repo_deb_ubuntu_noarch.list -O /etc/apt/sources.list.d/

compss-framework_noarch.list

debian x86_64 :

wget http://compss.bsc.es/releases/repofiles/repo_deb_debian_x86-64.list -O /etc/apt/sources.list.d/

compss-framework_x86-64.list

debian noarch :

wget http://compss.bsc.es/releases/repofiles/repo_deb_debian_noarch.list -O /etc/apt/sources.list.d/

compss-framework_noarch.list

Next you need to add the repository key by executing:

wget -qO - http://compss.bsc.es/repo/debs/deb-gpg-bsc-grid.pub.key | apt-key add -

And finally, refresh the apt-get repositories:

apt-get update

3.3 Installation

This section describes how to install all the available COMPSs packages. If you are willing
to have a full COMPSs installation just follow the COMPSs Framework instructions and
skip directly to next section.

• COMPSs Framework
Contains all the COMPSs functionalities including the Runtime, all the bindings,
all the tools and the cloud connectors.
To install this package please run:

4

apt-get install compss-framework

• COMPSs Runtime
Contains the COMPSs runtime to support the native functionalities. Install this
package if you only need to support Java applications.
To install this package please run:

apt-get install compss-runtime

This package is composed of two sub-packages:

– COMPSs Engine
Contains the COMPSs Engine, essential to run COMPSs applications as mas-
ter.
To install this package please run:

apt-get install compss-engine

– COMPSs Worker
Contains the minimum installation required to run a machine as a COMPSs
worker.
To install this package please run:

apt-get install compss-worker

• COMPSs Bindings
Contains all the required bindings for C/C++ and Python applications.
To install this package please run:

apt-get install compss-bindings

This package is composed of three sub-packages:

– COMPSs Bindings Common
Contains the API required for the communication between any binding and
the COMPSs Runtime. It is necessary for any binding installation.
To install this package please run:

5

apt-get install compss-bindings-common

– COMPSs C/C++ Binding
Contains the C/C++ Binding
To install this package please run:

apt-get install compss-c-binding

– COMPSs Python Binding
Contains the Python Binding
To install this package please run:

apt-get install compss-python-binding

• COMPSs Tools
Contains all the COMPSs Tools.
To install this package please run:

apt-get install compss-tools

This package is composed of three sub-packages:

– COMPSs Extrae
Contains the COMPSs Extrae tool needed to generate and process application
traces.
To install this package please run:

apt-get install compss-extrae

– COMPSs Monitor
Contains the COMPSs Monitor tool needed to monitor the application execu-
tion.
To install this package please run:

apt-get install compss-monitor

6

• COMPSs Cloud
Contains all the COMPSs Connectors needed to interact with the Cloud.
To install this package please run:

apt-get install compss-cloud

3.4 Post installation

Once your COMPSs package has been installed remember to log out and back in again
to end the installation process.

If you need to set up your machine for the first time please take a look at Section 8
for a detailed description of the additional configuration.

7

4 RedHat-based distributions (zypper)

4.1 Prerequisites

The commands described on the following sections require root privileges and Internet
connection.

Once the installation process is finished, please log out and back in again to complete
the installation.

4.2 Package Repository

To add the package repository you can easily download our predefined lists by executing
the following command:

x86_64 : zypper addrepo -f http://compss.bsc.es/repo/rpms/stable/suse/x86_64 compss

noarch : zypper addrepo -f http://compss.bsc.es/repo/rpms/stable/suse/noarch compss

And finally, refresh the repositories:

zypper refresh

4.3 Installation

This section describes how to install all the available COMPSs packages. If you are willing
to have a full COMPSs installation just follow the COMPSs Framework instructions and
skip directly to next section.

• COMPSs Framework
Contains the all COMPSs functionalities including the Runtime, all the bindings,
all the tools and the cloud connectors.
To install this package please run:

zypper install compss-framework

• COMPSs Runtime
Contains the COMPSs runtime to support the native functionalities. Install this
package if you only need to support Java applications.
To install this package please run:

zypper install compss-runtime

8

This package is composed of two sub-packages:

– COMPSs Engine
Contains the COMPSs Engine, essential to run COMPSs applications as mas-
ter.
To install this package please run:

zypper install compss-engine

– COMPSs Worker
Contains the minimum installation required to run a machine as a COMPSs
worker.
To install this package please run:

zypper install compss-worker

• COMPSs Bindings
Contains all the required bindings for C/C++ and Python applications.
To install this package please run:

zypper install compss-bindings

This package is composed of three sub-packages:

– COMPSs Bindings Common
Contains the API required for the communication between any binding and
the COMPSs Runtime. It is necessary for any binding installation.
To install this package please run:

zypper install compss-bindings-common

– COMPSs C/C++ Binding
Contains the C/C++ Binding
To install this package please run:

zypper install compss-c-binding

9

– COMPSs Python Binding
Contains the Python Binding
To install this package please run:

zypper install compss-python-binding

• COMPSs Tools
Contains all the COMPSs Tools.
To install this package please run:

zypper install compss-tools

This package is composed of three sub-packages:

– COMPSs Extrae
Contains the COMPSs Extrae tool needed to generate and process application
traces.
To install this package please run:

zypper install compss-extrae

– COMPSs Monitor
Contains the COMPSs Monitor tool needed to monitor the application execu-
tion.
To install this package please run:

zypper install compss-monitor

• COMPSs Cloud
Contains all the COMPSs Connectors needed to interact with the Cloud.
To install this package please run:

zypper install compss-cloud

4.4 Post installation

Once your COMPSs package has been installed remember to log out and back in again
to end the installation process.

10

If you need to set up your machine for the first time please take a look at Section 8
for a detailed description of the additional configuration.

11

5 RedHat-based distributions (yum)

5.1 Prerequisites

The commands described on the following sections require root privileges and Internet
connection.

Once the installation process is finished, please log out and back in again to complete
the installation.

5.2 Package Repository

To add the package repository you can easily download our predefined lists by executing
the following command:

x86_64 :

wget http://compss.bsc.es/releases/repofiles/repo_rpm_centos_x86-64.repo -O /etc/yum.repos.d/compss-

framework_x86-64.repo

5.3 Installation

This section describes how to install all the available COMPSs packages. If you are willing
to have a full COMPSs installation just follow the COMPSs Framework instructions and
skip directly to next section.

• COMPSs Framework
Contains the all COMPSs functionalities including the Runtime, all the bindings,
all the tools and the cloud connectors.
To install this package please run:

yum install compss-framework

• COMPSs Runtime
Contains the COMPSs runtime to support the native functionalities. Install this
package if you only need to support Java applications.
To install this package please run:

yum install compss-runtime

This package is composed of two sub-packages:

12

– COMPSs Engine
Contains the COMPSs Engine, essential to run COMPSs applications as mas-
ter.
To install this package please run:

yum install compss-engine

– COMPSs Worker
Contains the minimum installation required to run a machine as a COMPSs
worker.
To install this package please run:

yum install compss-worker

• COMPSs Bindings
Contains all the required bindings for C/C++ and Python applications.
To install this package please run:

yum install compss-bindings

This package is composed of three sub-packages:

– COMPSs Bindings Common
Contains the API required for the communication between any binding and
the COMPSs Runtime. It is necessary for any binding installation.
To install this package please run:

yum install compss-bindings-common

– COMPSs C/C++ Binding
Contains the C/C++ Binding
To install this package please run:

yum install compss-c-binding

– COMPSs Python Binding
Contains the Python Binding
To install this package please run:

13

yum install compss-python-binding

• COMPSs Tools
Contains all the COMPSs Tools.
To install this package please run:

yum install compss-tools

This package is composed of three sub-packages:

– COMPSs Extrae
Contains the COMPSs Extrae tool needed to generate and process application
traces.
To install this package please run:

yum install compss-extrae

– COMPSs Monitor
Contains the COMPSs Monitor tool needed to monitor the application execu-
tion.
To install this package please run:

yum install compss-monitor

• COMPSs Cloud
Contains all the COMPSs Connectors needed to interact with the Cloud.
To install this package please run:

yum install compss-cloud

5.4 Post installation

Once your COMPSs package has been installed remember to log out and back in again
to end the installation process.

If you need to set up your machine for the first time please take a look at Section 8
for a detailed description of the additional configuration.

14

6 Supercomputers

The COMPSs Framework can be installed in any Supercomputer by installing its packages
as in a normal distribution. The packages are ready to be reallocated so the administra-
tors can choose the right location for the COMPSs installation.

However, if the administrators are not willing to install COMPSs through the pack-
aging system, we also provide a COMPSs zipped file containing a pre-build script to
easily install COMPSs. Next subsections provide further information about this process.

6.1 Prerequisites

In order to successfully run the installation script some dependencies must be present on
the target machine. Administrators must provide the correct installation and environment
of the following software:

• Autotools

• BOOST

• Java 8 JRE

The following environment variables must be defined:

• JAV A HOME

• BOOST CPPFLAGS

The tracing system can be enhanced with:

• PAPI, which provides support for harware counters

• MPI, which speeds up the tracing merge (and enables it for huge traces)

6.2 Installation

To perform the COMPSs Framework installation please execute the following commands:

Check out the last COMPSs release

$ wget http://compss.bsc.es/repo/sc/stable/COMPSs_<version>.tar.gz

Unpackage COMPSs

$ tar -xvzf COMPSs_<version>.tar.gz

Install COMPSs at your preferred target location

$ cd COMPSs

$./install <targetDir>

Clean downloaded files

$ rm -r COMPSs

$ rm COMPSs_<version>.tar.gz

15

The installation script will create a COMPSs folder inside the given < targetDir >
so the final COMPSs installation will be placed under the < targetDir > /COMPSs
folder. Please note that if the folder already exists it will be automatically erased.

After completing the previous steps, administrators must ensure that the nodes have
passwordless ssh access. If it is not the case, please contact the COMPSs team at support−
compss@bsc.es.

The COMPSs package also provides a compssenv file that loads the required environment
to allow users work more easily with COMPSs. Thus, after the installation process we
recomend to source the < targetDir > /COMPSs/compssenv into the users .bashrc.

Once done, remember to log out and back in again to end the installation process.

6.3 Configuration

For queue system executions, COMPSs has a pre-build structure (see Figure 2) to execute
applications in SuperComputers. For this purpose, users must use the enqueue compss
script provided in the COMPSs installation. This script has several parameters (see
enqueue compss -h) that allow users to customize their executions for any SuperComputer.

Figure 2: Structure of COMPSs queue scripts. In Blue user scripts, in Green queue scripts
and in Orange system dependant scripts

To make this structure works, the administrators must define a configuration file for the
queue system (under < targetDir > /COMPSs/scripts/queues/cfgs/QUEUE/QUEUE.cfg)
and a configuration file for the specific SuperComputer parameters (under < targetDir >
/COMPSs/scripts/queues/cfgs/SCNAME.cfg). The COMPSs installation already
provides queue configurations for LSF and SLURM and several examples for Super-
Computer configurations.

To create a new configuration we recommend to use one of the configurations provided
by COMPSs (such as the configuration for the MareNostrum III SuperComputer) or to
contact us at support-compss@bsc.es .

16

support-compss@bsc.es

6.4 Post installation

To check that COMPSs Framework has been successfully installed you may run:

Check the COMPSs version

$ runcompss -v

COMPSs version <version>

For queue system executions, COMPSs provides several prebuild queue scripts than
can be accessible throgh the enqueue compss command. Users can check the available
options by running:

enqueue_compss -h

Usage: enqueue_compss [queue_system_options] [COMPSs_options]

application_name [application_arguments]

* Options:

General:

--help, -h Print this help message

Queue system configuration:

--exec_time=<minutes> Expected execution time of the application (in minutes)

Default: 10

--num_nodes=<int> Number of nodes to use

Default: 2

--num_switches=<int> Maximum number of different switches.

Select 0 for no restrictions.

Maximum nodes per switch: 18

Only available for at least 4 nodes.

Default: 0

--tasks_per_node=<int> Maximum number of simultaneous tasks running on a node

Default: 16

--node_memory=<MB> Maximum node memory: disabled | <int> (MB)

Default: 28

--network=<name> Communication network for transfers:

default | ethernet | infiniband | data.

Default: ethernet

--sc_cfg=<name> SuperComputer configuration file to use.

Must exist inside queues/cfgs/

Default: default

--queue=<name> Queue name to submit the job. Depends on the queue system.

For example (MN3): bsc_cs | bsc_debug | debug | interactive

Default: default

--reservation=<name> Reservation to use when submitting the job.

Default: disabled

--job_dependency=<jobID> Postpone job execution until the job dependency has ended.

Default: None

--master_working_dir=<path> Working directory of the application

Default: .

--worker_working_dir=<name | path> Worker directory. Use: scratch | gpfs | <path>

Default: scratch

--worker_in_master_tasks=<int> Maximum number of tasks that the master node

17

can run as worker. Cannot exceed tasks_per_node.

Default: 0

--worker_in_master_memory=<int> MB Maximum memory in master node assigned to the worker.

Cannot exceed the node_memory.

Mandatory if worker_in_master_tasks is specified.

Default: disabled

--jvm_worker_in_master_opts="<string>" Extra options for the JVM of the COMPSs Worker

in the Master Node. Each option separed by "," and without

blank spaces (Notice the quotes)

Default:

--task_execution=<compss|storage> Task execution under COMPSs or Storage.

Default: compss

--storage_conf=<path> Path to the storage configuration file

--storage_name=<dataclay|hecuba> Name of the storage platform dataClay or Hecuba.

Runcompss delegated parameters:

Tools enablers:

--graph=<bool>, --graph, -g Generation of the complete graph (true/false)

When no value is provided it is set to true

Default: false

--tracing=<level>, --tracing, -t Set generation of traces and/or tracing level

([true | basic] | advanced | false)

True and basic levels will produce the same traces.

When no value is provided it is set to true

Default: false

--monitoring=<int>, --monitoring, -m Period between monitoring samples (milliseconds)

When no value is provided it is set to 2000

Default: 0

--external_debugger=<int>,

--external_debugger Enables external debugger connection on the

specified port (or 9999 if empty)

Default: false

Runtime configuration options:

--task_execution=<compss|storage> Task execution under COMPSs or Storage.

Default: compss

--storage_conf=<path> Path to the storage configuration file

Default: None

--project=<path> Path to the project XML file

Default: /opt/COMPSs/Runtime/configuration/

xml/projects/default_project.xml

--resources=<path> Path to the resources XML file

Default: /opt/COMPSs/Runtime/configuration/

xml/resources/default_resources.xml

--lang=<name> Language of the application (java/c/python)

Default: java

--log_level=<level>, --debug, -d Set the debug level: off | info | debug

Default: off

Advanced options:

--comm=<path> Class that implements the adaptor for communications

Supported adaptors:

integratedtoolkit.nio.master.NIOAdaptor

| integratedtoolkit.gat.master.GATAdaptor

Default: integratedtoolkit.nio.master.NIOAdaptor

18

--scheduler=<path> Class that implements the Scheduler for COMPSs

Supported schedulers:

integratedtoolkit.components.impl.TaskScheduler

| integratedtoolkit.scheduler.readyscheduler.ReadyScheduler

Default: integratedtoolkit.scheduler.readyscheduler.

ReadyScheduler

--library_path=<path> Non-standard directories to search for libraries

(e.g. Java JVM library, Python library,

C binding library)

Default: Working Directory

--classpath=<path> Path for the application classes / modules

Default: Working Directory

--base_log_dir=<path> Base directory to store COMPSs log files

(a .COMPSs/ folder will be created inside this location)

Default: User home

--specific_log_dir=<path> Use a specific directory to store COMPSs log files

(the folder MUST exist and no sandbox is created)

Warning: Overwrites --base_log_dir option

Default: Disabled

--uuid=<int> Preset an application UUID

Default: Automatic random generation

--master_port=<int> Port to run the COMPSs master communications.

Only for NIO adaptor

Default: 43000

--jvm_master_opts="<string>" Extra options for the COMPSs Master JVM.

Each option separed by "," and without

blank spaces (Notice the quotes)

Default:

--jvm_workers_opts="<string>" Extra options for the COMPSs Workers JVMs.

Each option separed by "," and without

blank spaces (Notice the quotes)

Default: -Xms1024m,-Xmx1024m,-Xmn400m

--task_count=<int> Only for C/Python Bindings. Maximum number

of different functions/methods, invoked from

the application, that have been selected as tasks

Default: 50

--pythonpath=<path> Additional folders or paths to add to the PYTHONPATH

Default: /home/cramonco/svn/compss/framework/trunk/compss

--PyObject_serialize=<bool> Only for Python Binding. Enable the object

serialization to string when possible

(true/false).

Default: false

* Application name:

For Java applications: Fully qualified name of the application

For C applications: Path to the master binary

For Python applications: Path to the .py file containing the main program

* Application arguments:

Command line arguments to pass to the application. Can be empty.

If none of the pre-build queue configurations adapts to your infrastructure (lsf, pbs,
slurm, etc.) please contact the COMPSs team at support− compss@bsc.es to find out a
solution.

19

If you are willing to test the COMPSs Framework installation you can run any of the
applications available at our application repository https://compss.bsc.es/projects/

bar. We suggest to run the java simple application following the steps listed inside its
README file.

For further information about either the installation or the usage please check the README
file inside the COMPSs package.

20

https://compss.bsc.es/projects/bar
https://compss.bsc.es/projects/bar

7 Pip

7.1 Prerequisites

In order to be able to install COMPSs and PyCOMPSs with Pip the following require-
ments must be met:

1. Have all the dependencies (excluding the COMPSs packages) mentioned in the sec-
tion 2.2 satisfied and Python pip. As an example for some distributions:

Fedora 25 dependencies installation command:

sudo dnf install -y java-1.8.0-openjdk java-1.8.0-openjdk-devel graphviz xdg-utils libtool

automake python python-libs python-pip python-devel python2-decorator boost-devel boost-

serialization boost-iostreams libxml2 libxml2-devel gcc gcc-c++ gcc-gfortran tcsh @development-

tools redhat-rpm-config papi

If the libxml softlink is not created during the installation of libxml2, the COMPSs

installation may fail.

In this case, that softlink has to be created manually with the following command:

sudo ln -s /usr/include/libxml2/libxml/ /usr/include/libxml

Ubuntu 16.04 dependencies installation command:

sudo apt-get install -y openjdk-8-jdk graphviz xdg-utils libtool automake build-essential

python2.7 libpython2.7 libboost-serialization-dev libboost-iostreams-dev libxml2 libxml2-dev

csh gfortran python-pip papi

OpenSuse 42.2 dependencies installation command:

sudo zypper install --type pattern -y devel_basis

sudo zypper install -y java-1_8_0-openjdk-headless java-1_8_0-openjdk java-1_8_0-openjdk-

devel graphviz xdg-utils python python-devel libpython2_7-1_0 python-decorator libtool automake

boost-devel libboost_serialization1_54_0 libboost_iostreams1_54_0 libxml2-2 libxml2-devel

tcsh gcc-fortran python-pip papi libpapi

Debian 8 dependencies installation command:

su -

echo "deb http://ppa.launchpad.net/webupd8team/java/ubuntu xenial main" | tee /etc/apt/

sources.list.d/webupd8team-java.list

echo "deb-src http://ppa.launchpad.net/webupd8team/java/ubuntu xenial main" | tee -a /etc/

apt/sources.list.d/webupd8team-java.list

apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv-keys EEA14886

apt-get update

apt-get install oracle-java8-installer

apt-get install graphviz xdg-utils libtool automake build-essential python python-decorator

python-pip python-dev libboost-serialization1.55.0 libboost-iostreams1.55.0 libxml2 libxml2-dev

libboost-dev csh gfortran papi-tools

21

CentOS 7 dependencies installation command:

sudo rpm -iUvh https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

sudo yum -y update

sudo yum install java-1.8.0-openjdk java-1.8.0-openjdk-devel graphviz xdg-utils libtool

automake python python-libs python-pip python-devel python2-decorator boost-devel boost-

serialization boost-iostreams libxml2 libxml2-devel gcc gcc-c++ gcc-gfortran tcsh @development-

tools redhat-rpm-config papi

sudo pip install decorator

2. Have a proper JAVA_HOME environment variable definition. This variable must con-
tain a valid path to a Java JDK (as a remark, it must point to a JDK, not JRE).
A possible value is the following:

user@machine:~> echo $JAVA_HOME

/usr/lib64/jvm/java-openjdk/

7.2 Installation

Depending on the machine, the installation command may vary. It must be assured that
the Python2.7 pip is being executed. Some of the possible scenarios and their proper
installation command are:

1. There is more than one Python version installed:

sudo -E python2.7 -m pip install compss -v

2. There is only Python2.7 installed:

sudo -E pip install compss -v

It is recommended to restart the user session once the installation process has finished.
Alternatively, the following command sets all the COMPSs environment.

source /etc/profile.d/compss.sh

However, this command should be executed in every different terminal during the current
user session.

7.3 Configuration

The steps mentioned at section 8.1 must be done in order to have a functional COMPSs
and pyCOMPSs installation.

22

7.4 Post installation

As mentioned in section 7.2, it is recommended to restart the user session once the in-
stallation process has finished.

23

8 Additional Configuration

8.1 Configure SSH passwordless

By default, COMPSs uses SSH libraries for communication between nodes. Consequently,
after COMPSs is installed on a set of machines, the SSH keys must be configured on those
machines so that COMPSs can establish passwordless connections between them. This
requires to install the OpenSSH package (if not present already) and follow these steps
in each machine:

1. Generate an SSH key pair

$ ssh-keygen -t dsa

2. Distribute the public key to all the other machines and configure it as authorized

For every other available machine (MACHINE):

$ scp ~/.ssh/id_dsa.pub MACHINE:./myDSA.pub

$ ssh MACHINE "cat ./myDSA.pub >> ~/.ssh/authorized_keys; rm ./myDSA.pub"

3. Check that passwordless SSH connections are working fine

For every other available machine (MACHINE):

$ ssh MACHINE

For example, considering the cluster shown in Figure 3, users will have to execute the
following commands to grant free ssh access between any pair of machines:

me@localhost:~$ ssh-keygen -t id_dsa

Granting access localhost -> m1.bsc.es

me@localhost:~$ scp ~/.ssh/id_dsa.pub user_m1@m1.bsc.es:./me_localhost.pub

me@localhost:~$ ssh user_m1@m1.bsc.es "cat ./me_localhost.pub >> ~/.ssh/authorized_keys; rm ./me_localhost

.pub"

Granting access localhost -> m2.bsc.es

me@localhost:~$ scp ~/.ssh/id_dsa.pub user_m2@m2.bsc.es:./me_localhost.pub

me@localhost:~$ ssh user_m2@m2.bsc.es "cat ./me_localhost.pub >> ~/.ssh/authorized_keys; rm ./me_localhost

.pub"

me@localhost:~$ ssh user_m1@m1.bsc.es

user_m1@m1.bsc.es:~> ssh-keygen -t id_dsa

user_m1@m1.bsc.es:~> exit

Granting access m1.bsc.es -> localhost

me@localhost:~$ scp user_m1@m1.bsc.es:~/.ssh/id_dsa.pub ~/userm1_m1.pub

me@localhost:~$ cat ~/userm1_m1.pub >> ~/.ssh/authorized_keys

Granting access m1.bsc.es -> m2.bsc.es

me@localhost:~$ scp ~/userm1_m1.pub user_m2@m2.bsc.es:~/userm1_m1.pub

me@localhost:~$ ssh user_m2@m2.bsc.es "cat ./userm1_m1.pub >> ~/.ssh/authorized_keys; rm ./userm1_m1.pub"

me@localhost:~$ rm ~/userm1_m1.pub

24

me@localhost:~$ ssh user_m2@m2.bsc.es

user_m2@m2.bsc.es:~> ssh-keygen -t id_dsa

user_m2@m2.bsc.es:~> exit

Granting access m2.bsc.es -> localhost

me@localhost:~$ scp user_m2@m1.bsc.es:~/.ssh/id_dsa.pub ~/userm2_m2.pub

me@localhost:~$ cat ~/userm2_m2.pub >> ~/.ssh/authorized_keys

Granting access m2.bsc.es -> m1.bsc.es

me@localhost:~$ scp ~/userm2_m2.pub user_m1@m1.bsc.es:~/userm2_m2.pub

me@localhost:~$ ssh user_m1@m1.bsc.es "cat ./userm2_m2.pub >> ~/.ssh/authorized_keys; rm ./userm2_m2.pub"

me@localhost:~$ rm ~/userm2_m2.pub

Figure 3: Cluster example

8.2 Configure the COMPSs Cloud Connectors

This section provides information about the additional configuration needed for some
Cloud Connectors.

8.2.1 OCCI (Open Cloud Computing Interface) connector

In order to execute a COMPSs application using cloud resources, the rOCCI (Ruby OCCI)
connector has to be configured properly. The connector uses the rOCCI CLI client (upper
versions from 4.2.5) which has to be installed in the node where the COMPSs main
application runs. The client can be installed following the instructions detailed at http:
//appdb.egi.eu/store/software/rocci.cli

25

http://appdb.egi.eu/store/software/rocci.cli
http://appdb.egi.eu/store/software/rocci.cli

9 COMPSs Removal

9.1 How to uninstall or remove COMPSs

COMPSs can be easily uninstalled via the Linux Packaging Tools by running the following
commands:

Debian: apt-get remove compss-framework

RedHat (zypper): zypper remove compss-framework

RedHat (yum): yum remove compss-framework

Notice that some of the COMPSs packages are meta-packages and, thus, you will need
to manually uninstall all the COMPSs packages or use the autoremove tools:

Debian: apt-get autoremove

RedHat (zypper): zypper remove --clean-deps compss-framework

RedHat (yum): yum autoremove

In Debian based distributions uninstalling COMPSs will not erase your configuration
files. If you are willing to completely remove COMPSs please remember to use the purge
option:

Debian: apt-get purge compss-framework

9.2 How to clean repositories

During the installation process you may have added the COMPSs repository. If you
want to clean your respository list please erase the compss list by executing the following
commands:

Debian:

$ rm -f /etc/apt/sources.list.d/compss-framework_*.list

$ apt-get update

RedHat (zypper):

$ zypper removerepo compss

$ zypper refresh

RedHat (yum):

$ rm -f /etc/yum.repos.d/compss-framework_*.repo

26

Please find more details on the COMPSs framework at

http://compss.bsc.es

27

http://compss.bsc.es

	COMP Superscalar (COMPSs)
	Packages description
	Packages structure
	Packages Dependencies

	Debian-based distributions
	Prerequisites
	Package Repository
	Installation
	Post installation

	RedHat-based distributions (zypper)
	Prerequisites
	Package Repository
	Installation
	Post installation

	RedHat-based distributions (yum)
	Prerequisites
	Package Repository
	Installation
	Post installation

	Supercomputers
	Prerequisites
	Installation
	Configuration
	Post installation

	Pip
	Prerequisites
	Installation
	Configuration
	Post installation

	Additional Configuration
	Configure SSH passwordless
	Configure the COMPSs Cloud Connectors
	OCCI (Open Cloud Computing Interface) connector

	COMPSs Removal
	How to uninstall or remove COMPSs
	How to clean repositories

