
COMP Superscalar

Installation and Administration
Manual

Version: 2.5

June 12, 2019

This manual only provides information about how to install and configure COMPSs.
Specifically, it details the installation process for Debian based distributions and for Red-
Hat based distributions, and the steps to configure COMPSs properly.

If you are not wondering to install COMPSs please consider using our already pre-
pared Virtual Machine available at our webpage: http://compss.bsc.es .

For further information about the application execution please refer to the COMPSs
User Manual: Application execution guide available at http://compss.bsc.es/releases/
compss/latest/docs/COMPSs_User_Manual_App_Exec.pdf .

For further information about the application development please refer to the COMPSs
User Manual: Application development guide available at http://compss.bsc.es/ .

For full COMPSs application examples (codes, execution commands, results, logs,
etc.) please refer to the COMPSs Sample Applications available at http://compss.bsc.
es/releases/compss/latest/docs/COMPSs_User_Manual_App_Development.pdf .

i

http://compss.bsc.es
http://compss.bsc.es/releases/compss/latest/docs/COMPSs_User_Manual_App_Exec.pdf
http://compss.bsc.es/releases/compss/latest/docs/COMPSs_User_Manual_App_Exec.pdf
http://compss.bsc.es/
http://compss.bsc.es/releases/compss/latest/docs/COMPSs_User_Manual_App_Development.pdf
http://compss.bsc.es/releases/compss/latest/docs/COMPSs_User_Manual_App_Development.pdf

Contents

1 COMP Superscalar (COMPSs) 1

2 Dependencies 2
2.1 Build Dependencies . 2
2.2 Optional Dependencies . 2

3 Building from sources 3
3.1 Post installation . 3

4 Pip 4
4.1 Pre-requisites . 4
4.2 Installation . 5
4.3 Configuration . 6
4.4 Post installation . 6

5 Supercomputers 7
5.1 Prerequisites . 7
5.2 Installation . 7
5.3 Configuration . 8
5.4 Post installation . 9

6 Additional Configuration 14
6.1 Configure SSH passwordless . 14
6.2 Configure the COMPSs Cloud Connectors 15

6.2.1 OCCI (Open Cloud Computing Interface) connector 15

7 Configuration Files 16
7.1 Resources file . 16
7.2 Project file . 17
7.3 Configuration examples . 18

7.3.1 Parallel execution on one single process configuration 18
7.3.2 Cluster and grid configuration (static resources) 19
7.3.3 Shared Disks configuration example 20
7.3.4 Cloud configuration (dynamic resources) 21

7.3.4.1 Cloud connectors: rOCCI 24
7.3.4.2 Cloud connectors: JClouds 26
7.3.4.3 Cloud connectors: Docker 26
7.3.4.4 Cloud connectors: Mesos 26

7.3.5 Services configuration . 27

ii

List of Figures

1 Structure of COMPSs queue scripts. In Blue user scripts, in Green queue
scripts and in Orange system dependant scripts 8

2 Cluster example . 15

iii

List of Tables

1 Connector supported properties in the project.xml file. 24
2 Properties supported by any SSH based connector in the project.xml file. 24
3 rOCCI extensions in the project.xml file. 25
4 Configuration of the <provider>.xml templates file. 26
5 JClouds extensions in the project.xml file. 26
6 Mesos connector options in project.xml file. 27

iv

1 COMP Superscalar (COMPSs)

COMP Superscalar (COMPSs) is a programming model which aims to ease the develop-
ment of applications for distributed infrastructures, such as Clusters, Grids and Clouds.
COMP Superscalar also features a runtime system that exploits the inherent parallelism
of applications at execution time.

For the sake of programming productivity, the COMPSs model has four key charac-
teristics:

• Sequential programming: COMPSs programmers do not need to deal with the
typical duties of parallelization and distribution, such as thread creation and syn-
chronization, data distribution, messaging or fault tolerance. Instead, the model
is based on sequential programming, which makes it appealing to users that either
lack parallel programming expertise or are looking for better programmability.

• Infrastructure unaware: COMPSs offers a model that abstracts the application
from the underlying distributed infrastructure. Hence, COMPSs programs do not
include any detail that could tie them to a particular platform, like deployment or
resource management. This makes applications portable between infrastructures
with diverse characteristics.

• Standard programming languages: COMPSs is based on the popular program-
ming language Java, but also offers language bindings for Python and C/C++ ap-
plications. This facilitates the learning of the model, since programmers can reuse
most of their previous knowledge.

• No APIs: In the case of COMPSs applications in Java, the model does not require
to use any special API call, pragma or construct in the application; everything is
pure standard Java syntax and libraries. With regard the Python and C/C++
bindings, a small set of API calls should be used on the COMPSs applications.

1

2 Dependencies

Next we provide a list of dependencies for installing COMPSs package. The exact names
may vary depending on the Linux distribution but this list provides a general overview of
the COMPSs dependencies. For specific information about your distribution please check
the Depends section at your package manager (apt, yum, zypper, etc.).

COMPSs Runtime openjdk-8-jre, graphviz, xdg-utils, openssh-server

COMPSs Python Binding libtool, automake, build-essential, python (>= 2.7
— >= 3.6), python-dev — python3-dev, python-
setuptools— python3-setuptools, libpython2.7

COMPSs C/C++ Binding libtool, automake, build-essential, libboost-all-dev,
libxml2-dev

COMPSs Autoparallel libgmp3-dev, flex, bison, libbison-dev, texinfo, libffi-dev,
astor, sympy, enum34, islpy

COMPSs Tracing libxml2 (>= 2.5), libxml2-dev (>= 2.5), gfortran, papi

2.1 Build Dependencies

To build COMPSs from sources you will also need wget, openjdk-8-jdk and maven.

2.2 Optional Dependencies

For the Python binding it is also recommended to have dill and guppy installed. The
dill package increases the variety of serializable objects by Python (for example: lambda
functions), and the guppy package is needed to use the @local decorator. Both packages
can be found in pyPI and can be installed via pip.

2

3 Building from sources

This section describes the steps to install COMPSs from the sources.
The first step is downloading the source code from the Git repository.

$> git clone https://github.com/bsc-wdc/compss.git

$> cd framework

Then, you need to download the embedded dependencies from the git submodules.

$ framework> ./submodules_get.sh

$ framework> ./submodules_patch.sh

Finally you just need to run the installation script. You have to options: For installing
COMPSs for all the users run the following command. (root access is required)

$ framework> cd builders/

$ builders> INSTALL_DIR=/opt/COMPSs/

$ builders> sudo -E ./buildlocal [options] ${INSTALL_DIR}

For installing COMPSs for the current user run the following command.

$ framework> cd builders/

$ builders> INSTALL_DIR=$HOME/opt/COMPSs/

$ builders> ./buildlocal [options] ${INSTALL_DIR}

The different installation options can be found in the command help.

$ framework> cd builders/

$ builders> ./buildlocal -h

3.1 Post installation

Once your COMPSs package has been installed remember to log out and back in again
to end the installation process.

If you need to set up your machine for the first time please take a look at Section 6
for a detailed description of the additional configuration.

3

4 Pip

4.1 Pre-requisites

In order to be able to install COMPSs and PyCOMPSs with Pip the following require-
ments must be met:

1. Have all the dependencies (excluding the COMPSs packages) mentioned in the sec-
tion 2 satisfied and Python pip. As an example for some distributions:

Fedora 25 dependencies installation command:

sudo dnf install -y java-1.8.0-openjdk java-1.8.0-openjdk-devel graphviz xdg-utils libtool

automake python python-libs python-pip python-devel python2-decorator boost-devel boost-

serialization boost-iostreams libxml2 libxml2-devel gcc gcc-c++ gcc-gfortran tcsh @development-

tools redhat-rpm-config papi

If the libxml softlink is not created during the installation of libxml2, the COMPSs

installation may fail.

In this case, that softlink has to be created manually with the following command:

sudo ln -s /usr/include/libxml2/libxml/ /usr/include/libxml

Ubuntu 16.04 dependencies installation command:

sudo apt-get install -y openjdk-8-jdk graphviz xdg-utils libtool automake build-essential

python2.7 libpython2.7 libboost-serialization-dev libboost-iostreams-dev libxml2 libxml2-dev

csh gfortran python-pip libpapi-dev

Ubuntu 18.04 dependencies installation command:

sudo apt-get install -y openjdk-8-jdk graphviz xdg-utils libtool automake build-essential

python2.7 libpython2.7 python3 python3-dev libboost-serialization-dev libboost-iostreams-dev

libxml2 libxml2-dev csh gfortran GMP flex bison texinfo python3-pip libpapi-dev

OpenSuse 42.2 dependencies installation command:

sudo zypper install --type pattern -y devel_basis

sudo zypper install -y java-1_8_0-openjdk-headless java-1_8_0-openjdk java-1_8_0-openjdk-

devel graphviz xdg-utils python python-devel libpython2_7-1_0 python-decorator libtool automake

boost-devel libboost_serialization1_54_0 libboost_iostreams1_54_0 libxml2-2 libxml2-devel

tcsh gcc-fortran python-pip papi libpapi

Debian 8 dependencies installation command:

su -

echo "deb http://ppa.launchpad.net/webupd8team/java/ubuntu xenial main" | tee /etc/apt/

sources.list.d/webupd8team-java.list

4

echo "deb-src http://ppa.launchpad.net/webupd8team/java/ubuntu xenial main" | tee -a /etc/

apt/sources.list.d/webupd8team-java.list

apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv-keys EEA14886

apt-get update

apt-get install oracle-java8-installer

apt-get install graphviz xdg-utils libtool automake build-essential python python-decorator

python-pip python-dev libboost-serialization1.55.0 libboost-iostreams1.55.0 libxml2 libxml2-dev

libboost-dev csh gfortran papi-tools

CentOS 7 dependencies installation command:

sudo rpm -iUvh https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

sudo yum -y update

sudo yum install java-1.8.0-openjdk java-1.8.0-openjdk-devel graphviz xdg-utils libtool

automake python python-libs python-pip python-devel python2-decorator boost-devel boost-

serialization boost-iostreams libxml2 libxml2-devel gcc gcc-c++ gcc-gfortran tcsh @development-

tools redhat-rpm-config papi

sudo pip install decorator

2. Have a proper JAVA_HOME environment variable definition. This variable must con-
tain a valid path to a Java JDK (as a remark, it must point to a JDK, not JRE).
A possible value is the following:

user@machine:~> echo $JAVA_HOME

/usr/lib64/jvm/java-openjdk/

4.2 Installation

Depending on the machine, the installation command may vary. Some of the possible
scenarios and their proper installation command are:

1. Install systemwide:

sudo -E pip install pycompss -v

It is recommended to restart the user session once the installation process has fin-
ished. Alternatively, the following command sets all the COMPSs environment.

source /etc/profile.d/compss.sh

However, this command should be executed in every different terminal during the
current user session.

2. Install in user home folder (.local):

5

pip install pycompss -v

It is recommended to restart the user session once the installation process has fin-
ished. Alternatively, the following command sets all the COMPSs environment.

source ~/.bashrc

3. Within a Python virtual environment:

pip install pycompss -v

In this particular case, the installation includes the necessary variables in the ac-
tivate script. So, restart the virtual environment in order to set all the COMPSs
environment.

4.3 Configuration

The steps mentioned in Section 6.1 must be done in order to have a functional COMPSs
and PyCOMPSs installation.

4.4 Post installation

As mentioned in Section 4.2, it is recommended to restart the user session or virtual
environment once the installation process has finished.

6

5 Supercomputers

The COMPSs Framework can be installed in any Supercomputer by installing its packages
as in a normal distribution. The packages are ready to be reallocated so the administra-
tors can choose the right location for the COMPSs installation.

However, if the administrators are not willing to install COMPSs through the pack-
aging system, we also provide a COMPSs zipped file containing a pre-build script to
easily install COMPSs. Next subsections provide further information about this process.

5.1 Prerequisites

In order to successfully run the installation script some dependencies must be present on
the target machine. Administrators must provide the correct installation and environment
of the following software:

• Autotools

• BOOST

• Java 8 JRE

The following environment variables must be defined:

• JAVA HOME

• BOOST CPPFLAGS

The tracing system can be enhanced with:

• PAPI, which provides support for harware counters

• MPI, which speeds up the tracing merge (and enables it for huge traces)

5.2 Installation

To perform the COMPSs Framework installation please execute the following commands:

Check out the last COMPSs release

$ wget http://compss.bsc.es/repo/sc/stable/COMPSs_<version>.tar.gz

Unpackage COMPSs

$ tar -xvzf COMPSs_<version>.tar.gz

Install COMPSs at your preferred target location

$ cd COMPSs

$./install <targetDir>

Clean downloaded files

$ rm -r COMPSs

$ rm COMPSs_<version>.tar.gz

7

The installation script will create a COMPSs folder inside the given <targetDir>

so the final COMPSs installation will be placed under the <targetDir>/COMPSs folder.
Please note that if the folder already exists it will be automatically erased.

After completing the previous steps, administrators must ensure that the nodes have
passwordless ssh access. If it is not the case, please contact the COMPSs team at
support-compss@bsc.es.

The COMPSs package also provides a compssenv file that loads the required environment
to allow users work more easily with COMPSs. Thus, after the installation process we
recomend to source the <targetDir>/COMPSs/compssenv into the users .bashrc.

Once done, remember to log out and back in again to end the installation process.

5.3 Configuration

For queue system executions, COMPSs has a pre-build structure (see Figure 1) to execute
applications in SuperComputers. For this purpose, users must use the enqueue compss
script provided in the COMPSs installation. This script has several parameters (see
enqueue compss -h) that allow users to customize their executions for any SuperComputer.

Figure 1: Structure of COMPSs queue scripts. In Blue user scripts, in Green queue scripts
and in Orange system dependant scripts

To make this structure works, the administrators must define a configuration file for the
queue system (under <targetDir>/COMPSs/scripts/queues/cfgs/QUEUE/QUEUE.cfg)
and a configuration file for the specific SuperComputer parameters (under <targetDir>

/COMPSs/scripts/queues/cfgs/SC_NAME.cfg). The COMPSs installation already pro-
vides queue configurations for LSF and SLURM and several examples for SuperComputer
configurations.

To create a new configuration we recommend to use one of the configurations provided
by COMPSs (such as the configuration for the MareNostrum III SuperComputer) or to
contact us at support-compss@bsc.es .

8

support-compss@bsc.es

5.4 Post installation

To check that COMPSs Framework has been successfully installed you may run:

Check the COMPSs version

$ runcompss -v

COMPSs version <version>

For queue system executions, COMPSs provides several prebuild queue scripts than
can be accessible throgh the enqueue compss command. Users can check the available
options by running:

$ enqueue_compss -h

Usage: enqueue_compss [queue_system_options] [COMPSs_options]

application_name [application_arguments]

* Options:

General:

--help, -h Print this help message

Queue system configuration:

--sc_cfg=<name> SuperComputer configuration file to use.

Must exist inside queues/cfgs/

Default: default

Submission configuration:

--exec_time=<minutes> Expected execution time of the application (in minutes)

Default: 10

--num_nodes=<int> Number of nodes to use

Default: 2

--num_switches=<int> Maximum number of different switches.

Select 0 for no restrictions.

Maximum nodes per switch: 18

Only available for at least 4 nodes.

Default: 0

--queue=<name> Queue name to submit the job. Depends on the queue

system.

For example (Nord3): bsc_cs | bsc_debug | debug

| interactive

Default: default

--reservation=<name> Reservation to use when submitting the job.

Default: disabled

--job_dependency=<jobID> Postpone job execution until the job dependency

has ended.

Default: None

--storage_home=<string> Root installation dir of the storage implementation

Default: null

--storage_props=<string> Absolute path of the storage properties file

Mandatory if storage_home is defined

9

Launch configuration:

--cpus_per_node=<int> Available CPU computing units on each node

Default: 16

--gpus_per_node=<int> Available GPU computing units on each node

Default: 0

--max_tasks_per_node=<int> Maximum number of simultaneous tasks running on a node

Default: -1

--node_memory=<MB> Maximum node memory: disabled | <int> (MB)

Default: disabled

--network=<name> Communication network for transfers:

default | ethernet | infiniband | data.

Default: infiniband

--prolog="<string>" Task to execute before launching COMPSs (Notice the

quotes). If the task has arguments split them by ","

rather than spaces.

This argument can appear multiple times for more

than one prolog action

Default: Empty

--epilog="<string>" Task to execute after executing the COMPSs application

(Notice the quotes). If the task has arguments split

them by "," rather than spaces.

This argument can appear multiple times for more

than one epilog action

Default: Empty

--master_working_dir=<path> Working directory of the application

Default: .

--worker_working_dir=<name | path> Worker directory. Use: scratch | gpfs | <path>

Default: scratch

--worker_in_master_cpus=<int> Maximum number of CPU computing units that the

master node can run as worker.

Cannot exceed cpus_per_node.

Default: 0

--worker_in_master_memory=<int> MB Maximum memory in master node assigned to the worker.

Cannot exceed the node_memory.

Mandatory if worker_in_master_tasks is specified.

Default: disabled

--jvm_worker_in_master_opts="<string>" Extra options for the JVM of the COMPSs Worker in

the Master Node. Each option separed by "," and without

blank spaces (Notice the quotes)

Default: Empty

--container_image=<path> Runs the application by means of a singularity

container image

Default: Empty

--container_compss_path=<path> Path where compss is installed in the Singularity

container image

Default: /opt/COMPSs

Runcompss configuration:

Tools enablers:

--graph=<bool>, --graph, -g Generation of the complete graph (true/false)

When no value is provided it is set to true

Default: false

--tracing=<level>, --tracing, -t Set generation of traces and/or tracing level

([true | basic] | advanced | false)

10

True and basic levels will produce the same traces.

When no value is provided it is set to true

Default: false

--monitoring=<int>, --monitoring, -m Period between monitoring samples (milliseconds)

When no value is provided it is set to 2000

Default: 0

--external_debugger=<int>,

--external_debugger Enables external debugger connection on the

specified port (or 9999 if empty)

Default: false

Runtime configuration options:

--task_execution=<compss|storage> Task execution under COMPSs or Storage.

Default: compss

--storage_conf=<path> Path to the storage configuration file

Default: None

--project=<path> Path to the project XML file

Default: default_project.xml

--resources=<path> Path to the resources XML file

Default: default_resources.xml

--lang=<name> Language of the application (java/c/python)

Default: Inferred if possible. Otherwise: java

--summary Displays a task execution summary at the end of

the application execution

Default: false

--log_level=<level>, --debug, -d Set the debug level: off | info | debug

Default: off

Advanced options:

--extrae_config_file=<path> Sets a custom extrae config file. Must be in a

shared disk between all COMPSs workers.

Default: null

--comm=<ClassName> Class that implements the adaptor for communications

Supported adaptors:

es.bsc.compss.nio.master.NIOAdaptor

| es.bsc.compss.gat.master.GATAdaptor

Default: es.bsc.compss.nio.master.NIOAdaptor

--conn=<className> Class that implements the runtime connector for

the cloud

Supported connectors:

es.bsc.compss.connectors.DefaultSSHConnector

Default: es.bsc.compss.connectors.DefaultSSHConnector

--scheduler=<className> Class that implements the Scheduler for COMPSs

Supported schedulers:

es.bsc.compss.scheduler.fullGraphScheduler

.FullGraphScheduler

| es.bsc.compss.scheduler.fifoScheduler.FIFOScheduler

| es.bsc.compss.scheduler.resourceEmptyScheduler

.ResourceEmptyScheduler

Default: es.bsc.compss.scheduler.loadBalancingScheduler

.LoadBalancingScheduler

--library_path=<path> Non-standard directories to search for libraries

(e.g. Java JVM library, Python library, C binding

library)

Default: Working Directory

--classpath=<path> Path for the application classes / modules

Default: Working Directory

11

--appdir=<path> Path for the application class folder.

Default: User home

--base_log_dir=<path> Base directory to store COMPSs log files

(a .COMPSs/ folder will be created inside this location)

Default: User home

--specific_log_dir=<path> Use a specific directory to store COMPSs log files (the folder

MUST exist and no sandbox is created)

Warning: Overwrites --base_log_dir option

Default: Disabled

--uuid=<int> Preset an application UUID

Default: Automatic random generation

--master_name=<string> Hostname of the node to run the COMPSs master

Default: None

--master_port=<int> Port to run the COMPSs master communications.

Only for NIO adaptor

Default: [43000,44000]

--jvm_master_opts="<string>" Extra options for the COMPSs Master JVM. Each

option separed by "," and without blank spaces

(Notice the quotes)

Default: Empty

--jvm_workers_opts="<string>" Extra options for the COMPSs Workers JVMs. Each

option separed by "," and without blank spaces

(Notice the quotes)

Default: -Xms1024m,-Xmx1024m,-Xmn400m

--cpu_affinity="<string>" Sets the CPU affinity for the workers

Supported options: disabled, automatic, user defined

map of the form "0-8/9,10,11/12-14,15,16"

Default: automatic

--gpu_affinity="<string>" Sets the GPU affinity for the workers

Supported options: disabled, automatic, user defined

map of the form "0-8/9,10,11/12-14,15,16"

Default: automatic

--task_count=<int> Only for C/Python Bindings. Maximum number of different

functions/methods, invoked from the application, that

have been selected as tasks

Default: 50

--pythonpath=<path> Additional folders or paths to add to the PYTHONPATH

Default: User home

--PyObject_serialize=<bool> Only for Python Binding. Enable the object

serialization to string when possible (true/false).

Default: false

* Application name:

For Java applications: Fully qualified name of the application

For C applications: Path to the master binary

For Python applications: Path to the .py file containing the main program

* Application arguments:

Command line arguments to pass to the application. Can be empty.

If none of the pre-build queue configurations adapts to your infrastructure (lsf, pbs,
slurm, etc.) please contact the COMPSs team at support-compss@bsc.es to find out a
solution.

12

If you are willing to test the COMPSs Framework installation you can run any of the
applications available at our application repository https://compss.bsc.es/projects/

bar. We suggest to run the java simple application following the steps listed inside its
README file.

For further information about either the installation or the usage please check the README
file inside the COMPSs package.

13

https://compss.bsc.es/projects/bar
https://compss.bsc.es/projects/bar

6 Additional Configuration

6.1 Configure SSH passwordless

By default, COMPSs uses SSH libraries for communication between nodes. Consequently,
after COMPSs is installed on a set of machines, the SSH keys must be configured on those
machines so that COMPSs can establish passwordless connections between them. This
requires to install the OpenSSH package (if not present already) and follow these steps
in each machine:

1. Generate an SSH key pair

$ ssh-keygen -t dsa

2. Distribute the public key to all the other machines and configure it as authorized

For every other available machine (MACHINE):

$ scp ~/.ssh/id_dsa.pub MACHINE:./myDSA.pub

$ ssh MACHINE "cat ./myDSA.pub >> ~/.ssh/authorized_keys; rm ./myDSA.pub"

3. Check that passwordless SSH connections are working fine

For every other available machine (MACHINE):

$ ssh MACHINE

For example, considering the cluster shown in Figure 2, users will have to execute the
following commands to grant free ssh access between any pair of machines:

me@localhost:~$ ssh-keygen -t id_dsa

Granting access localhost -> m1.bsc.es

me@localhost:~$ scp ~/.ssh/id_dsa.pub user_m1@m1.bsc.es:./me_localhost.pub

me@localhost:~$ ssh user_m1@m1.bsc.es "cat ./me_localhost.pub >> ~/.ssh/authorized_keys; rm ./me_localhost

.pub"

Granting access localhost -> m2.bsc.es

me@localhost:~$ scp ~/.ssh/id_dsa.pub user_m2@m2.bsc.es:./me_localhost.pub

me@localhost:~$ ssh user_m2@m2.bsc.es "cat ./me_localhost.pub >> ~/.ssh/authorized_keys; rm ./me_localhost

.pub"

me@localhost:~$ ssh user_m1@m1.bsc.es

user_m1@m1.bsc.es:~> ssh-keygen -t id_dsa

user_m1@m1.bsc.es:~> exit

Granting access m1.bsc.es -> localhost

me@localhost:~$ scp user_m1@m1.bsc.es:~/.ssh/id_dsa.pub ~/userm1_m1.pub

me@localhost:~$ cat ~/userm1_m1.pub >> ~/.ssh/authorized_keys

Granting access m1.bsc.es -> m2.bsc.es

me@localhost:~$ scp ~/userm1_m1.pub user_m2@m2.bsc.es:~/userm1_m1.pub

me@localhost:~$ ssh user_m2@m2.bsc.es "cat ./userm1_m1.pub >> ~/.ssh/authorized_keys; rm ./userm1_m1.pub"

me@localhost:~$ rm ~/userm1_m1.pub

14

me@localhost:~$ ssh user_m2@m2.bsc.es

user_m2@m2.bsc.es:~> ssh-keygen -t id_dsa

user_m2@m2.bsc.es:~> exit

Granting access m2.bsc.es -> localhost

me@localhost:~$ scp user_m2@m1.bsc.es:~/.ssh/id_dsa.pub ~/userm2_m2.pub

me@localhost:~$ cat ~/userm2_m2.pub >> ~/.ssh/authorized_keys

Granting access m2.bsc.es -> m1.bsc.es

me@localhost:~$ scp ~/userm2_m2.pub user_m1@m1.bsc.es:~/userm2_m2.pub

me@localhost:~$ ssh user_m1@m1.bsc.es "cat ./userm2_m2.pub >> ~/.ssh/authorized_keys; rm ./userm2_m2.pub"

me@localhost:~$ rm ~/userm2_m2.pub

Figure 2: Cluster example

6.2 Configure the COMPSs Cloud Connectors

This section provides information about the additional configuration needed for some
Cloud Connectors.

6.2.1 OCCI (Open Cloud Computing Interface) connector

In order to execute a COMPSs application using cloud resources, the rOCCI (Ruby OCCI)
connector has to be configured properly. The connector uses the rOCCI CLI client (upper
versions from 4.2.5) which has to be installed in the node where the COMPSs main
application runs. The client can be installed following the instructions detailed at http:
//appdb.egi.eu/store/software/rocci.cli

15

http://appdb.egi.eu/store/software/rocci.cli
http://appdb.egi.eu/store/software/rocci.cli

7 Configuration Files

The COMPSs runtime has two configuration files: resources.xml and project.xml

. These files contain information about the execution environment and are completely
independent from the application.

For each execution users can load the default configuration files or specify their custom
configurations by using, respectively, the --resources=<absolute path to resources.xml>

and the --project=<absolute path to project.xml> in the runcompss command. The
default files are located in the /opt/COMPSs/Runtime/configuration/xml/ path.

Next sections describe in detail the resources.xml and the project.xml files, ex-
plaining the available options.

7.1 Resources file

The resources file provides information about all the available resources that can be used
for an execution. This file should normally be managed by the system administrators. Its
full definition schema can be found at
/opt/COMPSs/Runtime/configuration/xml/resources/resource schema.xsd.

For the sake of clarity, users can also check the SVG schema located at
/opt/COMPSs/Runtime/configuration/xml/resources/resource schema.svg.

This file contains one entry per available resource defining its name and its capabilities.
Administrators can define several resource capabilities (see example in the next listing)
but we would like to underline the importance of ComputingUnits. This capability
represents the number of available cores in the described resource and it is used to schedule
the correct number of tasks. Thus, it becomes essential to define it accordingly to the
number of cores in the physical resource.

compss@bsc:~$ cat /opt/COMPSs/Runtime/configuration/xml/resources/default_resources.xml

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<ResourcesList>

<ComputeNode Name="localhost">

<Processor Name="P1">

<ComputingUnits>4</ComputingUnits>

<Architecture>amd64</Architecture>

<Speed>3.0</Speed>

</Processor>

<Processor Name="P2">

<ComputingUnits>2</ComputingUnits>

</Processor>

<Adaptors>

<Adaptor Name="es.bsc.compss.nio.master.NIOAdaptor">

<SubmissionSystem>

<Interactive/>

</SubmissionSystem>

<Ports>

<MinPort>43001</MinPort>

<MaxPort>43002</MaxPort>

</Ports>

</Adaptor>

</Adaptors>

<Memory>

<Size>16</Size>

</Memory>

<Storage>

<Size>200.0</Size>

</Storage>

16

<OperatingSystem>

<Type>Linux</Type>

<Distribution>OpenSUSE</Distribution>

</OperatingSystem>

<Software>

<Application>Java</Application>

<Application>Python</Application>

</Software>

</ComputeNode>

</ResourcesList>

7.2 Project file

The project file provides information about the resources used in a specific execution.
Consequently, the resources that appear in this file are a subset of the resources described
in the resources.xml file. This file, that contains one entry per worker, is usually edited
by the users and changes from execution to execution. Its full definition schema can be
found at /opt/COMPSs/Runtime/configuration/xml/projects/project schema.xsd.

For the sake of clarity, users can also check the SVG schema located at
/opt/COMPSs/Runtime/configuration/xml/projects/project schema.xsd.

We emphasize the importance of correctly defining the following entries:

installDir Indicates the path of the COMPSs installation inside the resource (not
necessarily the same than in the local machine).

User Indicates the username used to connect via ssh to the resource. This user must
have passwordless access to the resource (for more information check the COMPSs
Installation Manual available at our website http://compss.bsc.es). If left empty
COMPSs will automatically try to access the resource with the same username
than the one that lauches the COMPSs main application.

LimitOfTasks The maximum number of tasks that can be simultaneously scheduled to
a resource. Considering that a task can use more than one core of a node, this value
must be lower or equal to the number of available cores in the resource.

compss@bsc:~$ cat /opt/COMPSs/Runtime/configuration/xml/projects/default_project.xml

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<Project>

<!-- Description for Master Node -->

<MasterNode\>

<!--Description for a physical node-->

<ComputeNode Name="localhost">

<InstallDir>/opt/COMPSs/</InstallDir>

<WorkingDir>/tmp/Worker/</WorkingDir>

<Application>

<AppDir>/home/user/apps/</AppDir>

<LibraryPath>/usr/lib/</LibraryPath>

<Classpath>/home/user/apps/jar/example.jar</Classpath>

<Pythonpath>/home/user/apps/</Pythonpath>

</Application>

<LimitOfTasks>4</LimitOfTasks>

<Adaptors>

<Adaptor Name="es.bsc.compss.nio.master.NIOAdaptor">

<SubmissionSystem>

17

http://compss.bsc.es

<Interactive/>

</SubmissionSystem>

<Ports>

<MinPort>43001</MinPort>

<MaxPort>43002</MaxPort>

</Ports>

<User>user</User>

</Adaptor>

</Adaptors>

</ComputeNode>

</Project>

7.3 Configuration examples

In the next subsections we provide specific information about the services, shared disks,
cluster and cloud configurations and several project.xml and resources.xml examples.

7.3.1 Parallel execution on one single process configuration

The most basic execution that COMPSs supports is using no remote workers and running
all the tasks internally within the same process that hosts the application execution. To
enable the parallel execution of the application, the user needs to set up the runtime and
provide a description of the resources available on the node. For that purpose, the user
describes within the <MasterNode> tag of the project.xml file the resources in the same
way it describes other nodes’ resources on the using the resources.xml file. Since there
is no inter-process communication, adaptors description is not allowed. In the following
example, the master will manage the execution of tasks on the MainProcessor CPU of
the local node - a quad-core amd64 processor at 3.0GHz - and use up to 16 GB of RAM
memory and 200 GB of storage.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<Project>

<MasterNode>

<Processor Name="MainProcessor">

<ComputingUnits>4</ComputingUnits>

<Architecture>amd64</Architecture>

<Speed>3.0</Speed>

</Processor>

<Memory>

<Size>16</Size>

</Memory>

<Storage>

<Size>200.0</Size>

</Storage>

</MasterNode>

</Project>

If no other nodes are available, the list of resources on the resources.xml file is empty
as shown in the following file sample. Otherwise, the user can define other nodes besides
the master node as described in the following section, and the runtime system will orches-
trate the task execution on both the local process and on the configured remote nodes.

18

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<ResourcesList>

</ResourcesList>

7.3.2 Cluster and grid configuration (static resources)

In order to use external resources to execute the applications, the following steps have to
be followed:

1. Install the COMPSs Worker package (or the full COMPSs Framework package) on
all the new resources following the Installation manual available at http://compss.
bsc.es .

2. Set SSH passwordless access to the rest of the remote resources.

3. Create the WorkingDir directory in the resource (remember this path because it is
needed for the project.xml configuration).

4. Manually deploy the application on each node.

The resources.xml and the project.xml files must be configured accordingly. Here
we provide examples about configuration files for Grid and Cluster environments.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<ResourcesList>

<ComputeNode Name="hostname1.domain.es">

<Processor Name="MainProcessor">

<ComputingUnits>4</ComputingUnits>

</Processor>

<Adaptors>

<Adaptor Name="es.bsc.compss.nio.master.NIOAdaptor">

<SubmissionSystem>

<Interactive/>

</SubmissionSystem>

<Ports>

<MinPort>43001</MinPort>

<MaxPort>43002</MaxPort>

</Ports>

</Adaptor>

<Adaptor Name="es.bsc.compss.gat.master.GATAdaptor">

<SubmissionSystem>

<Batch>

<Queue>sequential</Queue>

</Batch>

<Interactive/>

</SubmissionSystem>

<BrokerAdaptor>sshtrilead</BrokerAdaptor>

</Adaptor>

</Adaptors>

</ComputeNode>

<ComputeNode Name="hostname2.domain.es">

...

</ComputeNode>

</ResourcesList>

19

http://compss.bsc.es
http://compss.bsc.es

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<Project>

<MasterNode/>

<ComputeNode Name="hostname1.domain.es">

<InstallDir>/opt/COMPSs/</InstallDir>

<WorkingDir>/tmp/COMPSsWorker1/</WorkingDir>

<User>user</User>

<LimitOfTasks>2</LimitOfTasks>

</ComputeNode>

<ComputeNode Name="hostname2.domain.es">

...

</ComputeNode>

</Project>

7.3.3 Shared Disks configuration example

Configuring shared disks might reduce the amount of data transfers improving the appli-
cation performance. To configure a shared disk the users must:

1. Define the shared disk and its capabilities

2. Add the shared disk and its mountpoint to each worker

3. Add the shared disk and its mountpoint to the master node

Next example illustrates steps 1 and 2. The <SharedDisk> tag adds a new shared
disk named sharedDisk0 and the <AttachedDisk> tag adds the mountpoint of a named
shared disk to a specific worker.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<ResourcesList>

<SharedDisk Name="sharedDisk0">

<Storage>

<Size>100.0</Size>

<Type>Persistent</Type>

</Storage>

</SharedDisk>

<ComputeNode Name="localhost">

...

<SharedDisks>

<AttachedDisk Name="sharedDisk0">

<MountPoint>/tmp/SharedDisk/</MountPoint>

</AttachedDisk>

</SharedDisks>

</ComputeNode>

</ResourcesList>

On the other side, to add the shared disk to the master node, the users must edit
the project.xml file. Next example shows how to attach the previous sharedDisk0 to
the master node:

20

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<Project>

<MasterNode>

<SharedDisks>

<AttachedDisk Name="sharedDisk0">

<MountPoint>/home/sharedDisk/</MountPoint>

</AttachedDisk>

</SharedDisks>

</MasterNode>

<ComputeNode Name="localhost">

...

</ComputeNode>

</Project>

Notice that the resources.xml file can have multiple SharedDisk definitions and that
the SharedDisks tag (either in the resources.xml or in the project.xml files) can have
multiple AttachedDisk childrens to mount several shared disks on the same worker or
master.

7.3.4 Cloud configuration (dynamic resources)

In order to use cloud resources to execute the applications, the following steps have to be
followed:

1. Prepare cloud images with the COMPSs Worker package or the full COMPSs
Framework package installed.

2. The application will be deployed automatically during execution but the users need
to set up the configuration files to specify the application files that must be deployed.

The COMPSs runtime communicates with a cloud manager by means of connectors.
Each connector implements the interaction of the runtime with a given provider’s API,
supporting four basic operations: ask for the price of a certain VM in the provider, get
the time needed to create a VM, create a new VM and terminate a VM. This design
allows connectors to abstract the runtime from the particular API of each provider and
facilitates the addition of new connectors for other providers.

The resources.xml file must contain one or more <CloudProvider> tags that in-
clude the information about a particular provider, associated to a given connector. The
tag must have an attribute Name to uniquely identify the provider. Next example
summarizes the information to be specified by the user inside this tag.

21

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<ResourcesList>

<CloudProvider Name="PROVIDER_NAME">

<Endpoint>

<Server>https://PROVIDER_URL</Server>

<ConnectorJar>CONNECTOR_JAR</ConnectorJar>

<ConnectorClass>CONNECTOR_CLASS</ConnectorClass>

</Endpoint>

<Images>

<Image Name="Image1">

<Adaptors>

<Adaptor Name="es.bsc.compss.nio.master.NIOAdaptor">

<SubmissionSystem>

<Interactive/>

</SubmissionSystem>

<Ports>

<MinPort>43001</MinPort>

<MaxPort>43010</MaxPort>

</Ports>

</Adaptor>

</Adaptors>

<OperatingSystem>

<Type>Linux</Type>

</OperatingSystem>

<Software>

<Application>Java</Application>

</Software>

<Price>

<TimeUnit>100</TimeUnit>

<PricePerUnit>36.0</PricePerUnit>

</Price>

</Image>

<Image Name="Image2">

<Adaptors>

<Adaptor Name="es.bsc.compss.nio.master.NIOAdaptor">

<SubmissionSystem>

<Interactive/>

</SubmissionSystem>

<Ports>

<MinPort>43001</MinPort>

<MaxPort>43010</MaxPort>

</Ports>

</Adaptor>

</Adaptors>

</Image>

</Images>

<InstanceTypes>

<InstanceType Name="Instance1">

<Processor Name="P1">

<ComputingUnits>4</ComputingUnits>

<Architecture>amd64</Architecture>

<Speed>3.0</Speed>

</Processor>

<Processor Name="P2">

<ComputingUnits>4</ComputingUnits>

</Processor>

<Memory>

<Size>1000.0</Size>

</Memory>

<Storage>

<Size>2000.0</Size>

</Storage>

</InstanceType>

<InstanceType Name="Instance2">

<Processor Name="P1">

<ComputingUnits>4</ComputingUnits>

</Processor>

</InstanceType>

</InstanceTypes>

22

</CloudProvider>

</ResourcesList>

The project.xml complements the information about a provider listed in the resources.xml
file. This file can contain a <Cloud> tag where to specify a list of providers, each with
a <CloudProvider> tag, whose name attribute must match one of the providers in the
resources.xml file. Thus, the project.xml file must contain a subset of the providers
specified in the resources.xml file. Next example summarizes the information to be
specified by the user inside this <Cloud> tag.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<Project>

<Cloud>

<InitialVMs>1</InitialVMs>

<MinimumVMs>1</MinimumVMs>

<MaximumVMs>4</MaximumVMs>

<CloudProvider Name="PROVIDER_NAME">

<LimitOfVMs>4</LimitOfVMs>

<Properties>

<Property Context="C1">

<Name>P1</Name>

<Value>V1</Value>

</Property>

<Property>

<Name>P2</Name>

<Value>V2</Value>

</Property>

</Properties>

<Images>

<Image Name="Image1">

<InstallDir>/opt/COMPSs/</InstallDir>

<WorkingDir>/tmp/Worker/</WorkingDir>

<User>user</User>

<Application>

<Pythonpath>/home/user/apps/</Pythonpath>

</Application>

<LimitOfTasks>2</LimitOfTasks>

<Package>

<Source>/home/user/apps/</Source>

<Target>/tmp/Worker/</Target>

<IncludedSoftware>

<Application>Java</Application>

<Application>Python</Application>

</IncludedSoftware>

</Package>

<Package>

<Source>/home/user/apps/</Source>

<Target>/tmp/Worker/</Target>

</Package>

<Adaptors>

<Adaptor Name="es.bsc.compss.nio.master.NIOAdaptor">

<SubmissionSystem>

<Interactive/>

</SubmissionSystem>

<Ports>

<MinPort>43001</MinPort>

<MaxPort>43010</MaxPort>

</Ports>

</Adaptor>

</Adaptors>

</Image>

<Image Name="Image2">

<InstallDir>/opt/COMPSs/</InstallDir>

<WorkingDir>/tmp/Worker/</WorkingDir>

23

</Image>

</Images>

<InstanceTypes>

<InstanceType Name="Instance1"/>

<InstanceType Name="Instance2"/>

</InstanceTypes>

</CloudProvider>

<CloudProvider Name="PROVIDER_NAME2">

...

</CloudProvider>

</Cloud>

</Project>

For any connector the Runtime is capable to handle the next list of properties:

Name Description

provider-user Username to login in the provider

provider-user-credential Credential to login in the provider

time-slot Time slot

estimated-creation-time Estimated VM creation time

max-vm-creation-time Maximum VM creation time

Table 1: Connector supported properties in the project.xml file.

Additionally, for any connector based on SSH, the Runtime automatically handles the
next list of properties:

Name Description

vm-user User to login in the VM

vm-password Password to login in the VM

vm-keypair-name Name of the Keypair to login in the VM

vm-keypair-location Location (in the master) of the Keypair to login in the VM

Table 2: Properties supported by any SSH based connector in the project.xml file.

Finally, the next sections provide a more accurate description of each of the currently
available connector and its specific properties.

7.3.4.1 Cloud connectors: rOCCI

The connector uses the rOCCI binary client1 (version newer or equal than 4.2.5) which
has to be installed in the node where the COMPSs main application is executed.

This connector needs additional files providing details about the resource templates
available on each provider. This file is located under
<COMPSs INSTALL DIR>/configuration/xml/templates path. Additionally, the user
must define the virtual images flavors and instance types offered by each provider; thus,

1https://appdb.egi.eu/store/software/rocci.cli

24

https://appdb.egi.eu/store/software/rocci.cli

when the runtime decides the creation of a VM, the connector selects the appropriate
image and resource template according to the requirements (in terms of CPU, memory,
disk, etc) by invoking the rOCCI client through Mixins (heritable classes that override
and extend the base templates).

Table 3 contains the rOCCI specific properties that must be defined under the Provider
tag in the project.xml file and Table 3 contains the specific properties that must be de-
fined under the Instance tag.

Name Description

auth Authentication method, x509 only supported

user-cred Path of the VOMS proxy

ca-path Path to CA certificates directory

ca-file Specific CA filename

owner Optional. Used by the PMES Job-Manager

jobname Optional. Used by the PMES Job-Manager

timeout Maximum command time

username Username to connect to the back-end cloud provider

password Password to connect to the back-end cloud provider

voms Enable VOMS authentication

media-type Media type

resource Resource type

attributes Extra resource attributes for the back-end cloud provider

context Extra context for the back-end cloud provider

action Extra actions for the back-end cloud provider

mixin Mixin definition

link Link

trigger-action Adds a trigger

log-to Redirect command logs

skip-ca-check Skips CA checks

filter Filters command output

dump-model Dumps the internal model

debug Enables the debug mode on the connector commands

verbose Enables the verbose mode on the connector commands

Table 3: rOCCI extensions in the project.xml file.

25

Instance Multiple entries of resource templates.

Type Name of the resource template. It has to be the same name
than in the previous files

CPU Number of cores

Memory Size in GB of the available RAM

Disk Size in GB of the storage

Price Cost per hour of the instance

Table 4: Configuration of the <provider>.xml templates
file.

7.3.4.2 Cloud connectors: JClouds

The JClouds connector is based on the JClouds API version 1.9.1. Table 5 shows the
extra available options under the Properties tag that are used by this connector.

Name Description

provider Back-end provider to use with JClouds (i.e. aws-ec2)

Table 5: JClouds extensions in the project.xml file.

7.3.4.3 Cloud connectors: Docker

This connector uses a Java API client from https://github.com/docker-java/docker-java,
version 3.0.3. It has not additional options. Make sure that the image/s you want to load
are pulled before running COMPSs with docker pull IMAGE. Otherwise, the connectorn
will throw an exception.

7.3.4.4 Cloud connectors: Mesos

The connector uses the v0 Java API for Mesos which has to be installed in the node where
the COMPSs main application is executed. This connector creates a Mesos framework
and it uses Docker images to deploy workers, each one with an own IP address.

By default it does not use authentication and the timeout timers are set to 3 minutes
(180.000 milliseconds). The list of optional properties available from connector is shown
in Table 6.

26

https://github.com/docker-java/docker-java

Name Description

mesos-framework-name Framework name to show in Mesos.

mesos-woker-name Worker names to show in Mesos.

mesos-framework-hostname Framework hostname to show in Mesos.

mesos-checkpoint Checkpoint for the framework.

mesos-authenticate Uses authentication? (true/false)

mesos-principal Principal for authentication.

mesos-secret Secret for authentication.

mesos-framework-register-timeout Timeout to wait for Framework to register.

mesos-framework-register-timeout-units Time units to wait for register.

mesos-worker-wait-timeout Timeout to wait for worker to be created.

mesos-worker-wait-timeout-units Time units for waiting creation.

mesos-worker-kill-timeout Number of units to wait for killing a worker.

mesos-worker-kill-timeout-units Time units to wait for killing.

mesos-docker-command Command to use at start for each worker.

mesos-containerizer Containers to use: (MESOS/DOCKER)

mesos-docker-network-type Network type to use: (BRIDGE/HOST/USER)

mesos-docker-network-name Network name to use for workers.

mesos-docker-mount-volume Mount volume on workers? (true/false)

mesos-docker-volume-host-path Host path for mounting volume.

mesos-docker-volume-container-path Container path to mount volume.

Table 6: Mesos connector options in project.xml file.

* TimeUnit avialable values: DAYS, HOURS, MICROSECONDS, MILLISECONDS, MINUTES, NANOSECONDS,
SECONDS.

7.3.5 Services configuration

To allow COMPSs applications to use WebServices as tasks, the resources.xml can
include a special type of resource called Service. For each WebService it is necessary to
specify its wsdl, its name, its namespace and its port.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<ResourcesList>

<ComputeNode Name="localhost">

...

</ComputeNode>

<Service wsdl="http://bscgrid05.bsc.es:20390/hmmerobj/hmmerobj?wsdl">

<Name>HmmerObjects</Name>

<Namespace>http://hmmerobj.worker</Namespace>

<Port>HmmerObjectsPort</Port>

</Service>

</ResourcesList>

27

When configuring the project.xml file it is necessary to include the service as a worker
by adding an special entry indicating only the name and the limit of tasks as shown in
the following example:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<Project>

<MasterNode/>

<ComputeNode Name="localhost">

...

</ComputeNode>

<Service wsdl="http://bscgrid05.bsc.es:20390/hmmerobj/hmmerobj?wsdl">

<LimitOfTasks>2</LimitOfTasks>

</Service>

</Project>

28

Please find more details on the COMPSs framework at

http://compss.bsc.es

29

http://compss.bsc.es

	COMP Superscalar (COMPSs)
	Dependencies
	Build Dependencies
	Optional Dependencies

	Building from sources
	Post installation

	Pip
	Pre-requisites
	Installation
	Configuration
	Post installation

	Supercomputers
	Prerequisites
	Installation
	Configuration
	Post installation

	Additional Configuration
	Configure SSH passwordless
	Configure the COMPSs Cloud Connectors
	OCCI (Open Cloud Computing Interface) connector

	Configuration Files
	Resources file
	Project file
	Configuration examples
	Parallel execution on one single process configuration
	Cluster and grid configuration (static resources)
	Shared Disks configuration example
	Cloud configuration (dynamic resources)
	Cloud connectors: rOCCI
	Cloud connectors: JClouds
	Cloud connectors: Docker
	Cloud connectors: Mesos

	Services configuration

