Integrated Development

Environment

User Guide
Version 1.1.2

Barcelona
Supercomputing

Center
Centro Nacional de Supercomputacion

®

Table of Contents

TABLE OF CONTENTS......coiiiuitiininnnniiiinnneinisssnnisissssnsensssssessnns 3

1.
1.1. Installation from COMPSs Eclipse Update Site

1.2. Installation from Eclipse Marketplace
1.3. Installation from COMPSs VM

1.4. Installation from Sources

2.

3.

3.1. Implementation

INSTALLING THE SOFTWARE.......ccccootimmmtitiiriiiisnnnnnntttinnicssssssnssnetenesssssssssnnssssenseseas 4

GETTING STARTED.....ccctiiiiiinissans
Step 1: Create a new COMPSs application Project ... s sesesesesesenes
Step 2: Create a new Orchestration Class.ccccoevveerrnnne
Step 3: Add an Orchestration Element.........ccccecevveririrnnnee
Step 4: Add COTE EIBIMENTS ..eovieereriririrsireser et bbb
Step 5: Implement the Orchestration Element Workflow ...
Step 6: Check the application 1ocally. ...cccocevvrrnrrcce e
Step 7: Deploy the application in a distributed infrastructure.ccccceceereerreeeeeceeeceees

OTHER FUNCTIONALITIES ...uuueeeiiiiiiiiiiiinnntitieiiescisseennneteiesssssssesssesteenessssssssnssssens 15

3.1.1. Create @ Core EICMENES ..ottt ettt st ae et e et e e e nentnnennens
New Method Core Element from Existing Class
New Method Core Element from Executable
New Service Core Element from WSDL ...t se e sas et ss s s sens
New Service Core Element from WAR package

3.1.2. Invocation of Core Elements from the Orchestration Element Code.cccccoeevererrercennene. 20
Invoke Method Core Elements
Invoke Service Core Elements

3.1.3. Manage Application Elements Constraints

3.1.4. Add Elasticity Boundaries to Application EIeMentsccooirvnrnnnesnnessnseseseseseseseseseneas 22

3.1.5. Manage Application Element Dependenciesc.ccvrrrnnnrenenesennesesessesesesesesesesessssssssssnnens 23

3.1.6. Definea COMPSs Application from existing war and jar packages.........c.coucererererserererenencenns 23

3.1.7. Convert aJava Project to COMPSs Application Project.........ccevvrnnisnssssnssssessnenens 25

3.2 Deployment
3.2.1. Deployment Options..............
Deploymentin Private Grid

Resource SeleCtion......
Define Deployment INfOrmMation ...t
Define Shared DisKS......ccocomnnicninisinsicnniisnne

Define Data Staging.....
Deployment with the Enactment Servic
Define StOTAZE SEIVICE ..ciuiiiiieeieeete sttt b s e b s nnnas
Define Enactment SeIviCe ... s
3.2.2. Selectthe Main Class.............
3.2.3. Application Status View

KNOWN LIMITATIONS......coiiniiiiiinnntininnntteniisnneinisssnisssssssssssssssesssssssssssssssssssssssssses 37

REFERENCES.....ccuiiiiiiiiiiiinintitiiiiiiciiennntttiiiessssnnssstetetinesssssssssssssnsssssssssnssssssssnesssssssnns 38

1.

Installing the software

Next paragraphs describe the different option for installing the COMPSs IDE plugin in the
Eclipse platform [1].

1.1.Installation from COMPSs Eclipse Update Site

To install the COMPSs IDE from the COMPSs Update Site, open the “Install New Software...”
option of the Eclipse Help menu as shown in Figure 1.

&

File Edit Run Mavigate Search Project Window

. Welcome
mig I R =R =
Help Contents
[Project Explorer 23 =0 Search
=P - Dynamic Help

P i Analysisinvoker A Key Assist..

D 5 ApplicationGlobalCheckings Tips and Tricks

~ Report Bug or Enhancement...

D =7 CloudSearchWah
(< I

[2) Cheat Sheets...
o= Cutline £2 Bl Task List ¥ =4 ZK Helps
An outline is not available Activate ZK Studio

Software Updates

Checlk for Updates
_Install New Software...

Eclipse Markstplace. ..

About Eclipse

Shift+Ctri+L

Figure 1. Snapshot for opening the wizard to install new software

Then, a new window like in Figure 2-left will be open. Click “Add..” to include the Eclipse
Update Site for the COMPSs IDE. Afterwards, introduce the URL of our update site
http://compss.bsc.es/releases/ide/ in the new dialog window (Figure 2-right).
& Instail
Available Software ,7
Select a site or enter the location of a site _’)l_
L
Work with: |type or select a site | v ‘ | Add.., |
Find more software by working with the "Available Software Sites” E.] M
[4]
Mame Version tame [compss—ide l | Local |
L@ Thereis no site selected Location [http'h’cnmpss bsec. es/releases/ide/ l | Archive |
C Cancel | | oK |

Figure 2. Snapshots for adding the COMPSs IDE Update Site

Once the repository has been included you will see that the window has been updated with
the available COMPSs IDE plugins (Figure 3). Select the Core plug-in and the desired Deployers
plug-ins according to the distributed infrastructure you have available. Once the plugins are
selected, click “Next >”, accept the license terms and click “Finish” to start the installation
process. Once the installation process is complete the COMPSs IDE will be available on your
Eclipse installation.

http://compss.bsc.es/releases/ide/

|' Oy [nstall [52)

Available Software
Check the items that you wish to install. (

Waork with: |compss-ide - http://compss.bsc.es/releases/ide/ | n2 l [Add.. l

Find more software by working with the "Available Software Sites” preferences.

[tj.-|:n:- filter text egl
Name ‘ersion
~ [v] 000 COMPSs-IDE-Core

§#* COMPSs-IDE-Core 1.1.0.201402141054

B [= 000 COMPSs-IDE-Deployers

[Select All l I Deselect All 3 items selected

Details

[[J Show only the latest versions of available software [[] Hide items that are already installed
Group items by category What is already installed?

[[] Show only software applicable to target ervironment

Contact all update sites during install to find required software

@ | Back |[MNext = l [Cancel] | Finish

Figure 3. Available COMPSs IDE plug-ins

1.2.Installation from Eclipse Marketplace

To install the COMPSs IDE from the Eclipse Marketplace [2], open the “Eclipse Marketplace...”
option of the Eclipse Help menu as shown in Figure 4.

File Edit Run Mavigate Search Project wmduw

Welcome
(= B|ar | s |
| Help Contents
[Praject Explorer £2 =8 Search
& - Dynamic Help
b ;’HAnalysislnvnker Key Assist.. Shift+Ctrl+L
b {2 ApplicationGlohalCheckings { Tips and Tricks
b =T ClaudSearchWeh Report Bug or Enhancement...
‘ > Cheat Sheets..
5= Qutline 23 El Task Llsq ¥ =0 ZK Helps >
An outline is not available Activate ZK Studio
Software Updates >
Check for Updates
Install New Software...
Ecliese Marketg\ace..
About Eclipse

Figure 4. Open Eclipse Marketplace snapshot

Then, a new window like in Figure 5 will be open where users can search for Eclipse
extensions. Introduce “COMPSs IDE” in the text box and click “Go”. You will see that a COMPSs
entry appear in list of the view. Finally, click “Install” inside COMPSs IDE entry to start the
installation process.

Eclipse Marketplace ’%
L

Select solutions to install. Press Finish to proceed with installation.
Press the information button to see a detailed ovenview and a link to more information.

Search | Recent | Popular | Installed

Find: [Q COMPSs| 7| [Al Markets | [l Categaries 12| [Go

@ COMP Superscalar Integrated Development Environms sh: @

COMP Superscalar (COMPSs) is a programming model which aims to ease the
development of applications for distributed infrastructures, such as Clusters, Grids
and

by Barcelona Supercomputing Center, Apache 2.0 |Insta|l|

COMPSs Distributed Computing Grid Computing Cloud Computing High
Productive Development

‘f_?:' | Cancel |

Figure 5. Eclipse Marketplace snapshot

From this point on, the installation is the same as the explained in Section 1.1. Users must
select the IDE core feature and the desired Deployers plug-ins and follow the instructions
provided by the installation wizard to accept the license terms and finalize de installation
process.

1.3.Installation from COMPSs VM

The following instructions have been detailed for the Oracle Virtual Box Manager [3] version 4
or higher. To install the COMPSs Virtual Appliance you need to perform the following steps:

1.
2.
3.

Download the Virtual Appliance file from the COMPSs web site [4].
Open the Virtual Box VM Administrator.

Select the Import Virtualised service option in the File menu and an import wizard will
be open.

Click on Select... and choose the downloaded .ova file and click Next.

5. The following page will provide a default VM configuration for this appliance. In case

8.

some parameters are not suitable for your system change them.
When finish, click Import to start the VM import process.

After a successful import process, a new VM will appear in the main window of the VM
Virtual Box Administrator.

Select the newly created VM and click Start.

The COMPSs IDE is installed as an Eclipse plug-in. The plugin has also prepared to work with a
COMPSs runtime libraries installed in /opt/COMPSs/. You have to set this location when a new
COMPSs project is created with the IDE.

1.4.Installation from Sources

For installing the COMPSs IDE plug-in from the source code you require to install first the
following software:

- Eclipse platform (version 3.6 or higher) and the Web Development Tools plug-in
- The Subversion client [5] to check-out the source code
- Apache Maven [6](version 3 or higher) to compile the source code

Once these software is installed in your machine, follow the steps described below to install
the COMPSs IDE plug-in.

1.- Check-out the source code from the URL obtained from the COMPSs website[4].

user@host:~$ svn checkout http://<compss/svn/ide path> <ide_co_path>

2.- Compile the code and build the plug-in using Maven.
user@host:~$ cd <ide_co_path>

user@host:<ide co_path>$ mvn clean install -Dmaven.test.skip=true

3.- Initiate the eclipse platform.

user@host:~$ ECLIPSE_HOME/eclipse

4.- Install the plug-in from a local update site. Follow the same steps as explained in Section
1.1, but substituting the COMPSs update site URL by the following local URL:

jar:file<ide co path>/IDE-site /target/site-<version>-SNAPSHOT.zip!/

2. Getting Started

A Service developed by the COMPSs Programming Model is composed by orchestration and
core Elements (a.k.a. Tasks). A core element is a piece of code which either is repeated several
times in the service code and potentially in parallel or is performing a computation which
requires a lot of resources or both. An orchestration element is the code which implements
the service functionality invoking several defined core elements.

If the IDE plug-in has been successfully installed a CompSs menu with different actions should
appear in the Menu bar and a set of COMPSs wizards should appear in the “File->New...” sub
menu when the Eclipse platform is initiated. There is also an Application Editor which will be
available when a new project is created. You can use these actions, wizards and editor to
easily create a new COMPSs application with different orchestration and core elements in
seven steps.

Step 1: Create a new COMPSs application project

The first step to implement an application with the COMPSs programming model is creating a
new COMPSs application project. This can be done by opening the menu “File ->New-> Project”
and selecting the New Application Project wizard located in the COMP Superscalar section as
shows in Figure 6.

NewProject

Select a wizard

Wizards:

[r

2% Java Project E
4 Java Project from Existing Ant Buildfile

I Plug-in Project
P (= General
&
&% New Application Project
b = CVS
P (= Eclipse Modeling Framewaork
b (=EJB

N —
@ | Cancel |

Figure 6. Creating a new COMPSs application project

Once the wizard is open, a window like in Figure 7 will appear. Introduce the desired name
for the project, the name of the main package where the application classes will belong to and
the location where the COMPSs libraries are installed in your machine. Finally, click “Finish” to
start the process for creating the project.

New EOMPSs/Application|Project

COMPSs Application Project
This wizard allows users to create a new COMPSs Application project

Project Name [NEWP(OJQH]

Main Package [project main_package]

Runtime Location

Runtime Location [fupt.’COMPSs] [Browse l

@ cmer | ton> [can][oo

Figure 7. New COMPSs Application project wizard.

As result of this wizard, the IDE creates a new project and opens the Application Editor will as
shown in Figure 8. In this figure, the actions required for some of the next steps has been also
depicted.

Resource- NewProject/META-INF/metadata’xml - Eclips e Platform

File Edit Mavgate Search Project CompSs Run Window Help

o | @ |ar | #e |2 v v o o 9 (CResoures

[Project Explorer % = EW[@Apphcamn Editor 23 = EW
€ | " .
=3 mplementation Overview
> ANewProject Orchestration Classes Runtime
[This section provides the interface to manage Orchestration Classes Step 2 This section provides the interface to manage the Runtime location,
Qreh, Class Location
~ Orchestration Elements ~ Core Elements
This section provides the interface to manage the orchestration elements of the selected class. Step 3 This section provides the interface to manage the core elements of the selected class. Step 4
[New...| [New...|
» Orchestration Element Description » Core Element Description
85 Outline 52 =8
An outling is not available
Step 6 and 7 3
Implementation| Build and Deploy | metadata. xmi | project. xmi| resources. xmi
i Tasks 52 v =8
0 items
v |t Description Resource | Path Location Type

e

Figure 8. COMPSS IDE Service Editor

Step 2: Create a new Orchestration Class.

Once the project is created, developers have to include a new class to include Orchestration
and Core Elements. This phase can be done with the New COMPSs Application Class wizard
(such as Figure 9). This wizard will be opened by clicking the “New...” button located on the
Orchestration Classes section of the Implementation Tab in the Application Editor (Figure 8.
Step 2). Developers have to fill the Name field, select the class Type. The current available
class types are standard Class or a Web Service Interface Class options and click “Finish”. Then
a new Orchestration Class and Core Element interface will be created in the main package of
the project.

New COMPSs Application Class
COMPSs Application Class

Creates a new COMPSs Application class for including Orchestration Elements

Source folder: [NewF'rojectfsrc l | Browse..

Package: [project.main_package l | Browse. ..

J
|
Mame: [NewWSCIaSS l
|

Type [| ~
Standard Class

Web Service Interface Class

'f?:' | Cancel | | Einish

Figure 9. New Orchestration Class wizard snapshot.

Step 3: Add an Orchestration Element

After the creation of the Orchestration Class, developers have to include an Orchestration
Element in this class. This Orchestration Element will implement the workflow with different
Core Element invocations. An Orchestration Element can be added by using the New
Orchestration Element wizard (Figure 10) open when clicking the “New..” button of the

Orchestration Elements section located on the Implementation Tab of the Application Editor
(Figure 8. Step 3)

Developers have to define at least the name of the Orchestration Element method, the return
type and the method parameters. If the Orchestration class is a WS interface we can also
indicate if the new Orchestration Element is going to be part of the WS interface or a private
method. It is done by checking the option Part of the Service Interface. If the Orchestration
Element has special constraints, it can be also defined in the wizard like described in Section
3.1.3. Once the wizard is finalized, a new method is created in the orchestration class with the
corresponding parameters and annotations.

New Orchestration Element

Creates a new Orchestration Element for an application

Crchestration Element Location

Source folder: [NewProjectfsrc] [Browse. .. l
Package: [projecl.main_package]
Orch. Class [NewWSC\ass]
Crchestration Element Description

Name [newOEMethud| HSeIect l
Return Type [\roid] [Select...l

Add...
Type MName
EEICINECICEN java.lang. String input

MName | Value
Constraints

Part of the Semice Interface

@ Cancel l I Finish

Figure 10. Orchestration Element Wizard

Step 4: Add Core Elements

The core elements invoked from the orchestration elements of an orchestration class must be
defined in the corresponding Core Element Interface. To do it, the COMPSs IDE offers a New
Core Element wizard, which is open by clicking the “New...” button of the Core Elements section
located on the Implementation Tab of the Application Editor (Figure 8. Step 4). Developers
currently have several options to create a new core element as depicted in Figure 11. In this
part of the document, we are just going to explain detail how to create a new method core

element from scratch. More details about the other options for creating core elements are
detailed in Section 3.1.1.

NewlCoreElement: E:

Create Core Element

Select the way to create the new Core Element for the application

Select the core element creation option

@ |New method core element from scratch\

) New method core element from executable
) Mew method core element form existing class method
O Mew sewice core element from wsdl

O Mew sewice core element from war

Figure 11. New Core Element wizard snapshot

When a developer selects the option for creating a new core element from scratch, the wizard
will show a view (Figure 12-left) to introduce the class where the new core element will be
included and the desired method name for the new core element. Then, after clicking “Next”,
the wizard will show a view (Figure 12-right) to complete the required element information
(return type, parameters and constraints). These values are similar than in the ones specified
for New Orchestration Element wizard with the different that core elements parameters must
define the direction of the parameter (IN, OUT or INOUT) and indicate if the parameter is a file
with setting the parameter type as Type.FILE. Finally, the core element creation is finalized by

clicking “Finish”, and the new core element method is created in the Core Clement Interface
and the declaring class.

NewlEarelElement Newl/Eore Element

Element Location

Create Core Element

Define the Core Element with the selected procedure

New Core Element

Element Location

Source folder: lNemeject!src

Creates a new Core Element for an application

]

H Browse... ‘ Source folder: INewF‘rojecta'src ‘ Browse...
Package: Ipluject.maiﬂipackage l ‘ Browse... ‘ Package: IF”UJECt main_package ‘ Browse...
CE Interface INewWSCIassItf l ‘ Browse ‘ CE Interface INewWSC\assItf ‘ Browse...
Element description Element description
. Name [newCEMethud
Declaring Class lNewCuleEIememCIass]
Return Type [java.lang.Stling HSeIect...|
Method [newCEMethod] |
Type Name ‘ Add... |
Type.FILE | inputFile -
Parameters H Modify.
e Modiy_|
‘ Delete |
Mame | Value ‘ Add... |
Constraints
=7 Specific Core Element Description
Declaring Class |MewCoreElementClass
Options [islnit & isModifier
Wethod Modifiers & static [final
@] < Back ” Next = || Cancel | @) | < Back | Einish

Figure 12. New Core Element Wizard from scratch snapshots.

Step 5: Implement the Orchestration Element wor kflow

Once the Core Elements have been defined, the developer has to program the business
process or workflow that implements the application functionality inside the Orchestration
Element method. An example code is depicted in Figure 13. This workflow is programmed as
a sequential code where the different defined Core Elements are invoked as you will do with
in standard Java. At runtime, COMPSs will detect the data dependencies between the
invocations and execute tasks concurrently according to those data dependencies. More
details can be found at Section 3.1.2.

Resoiinee - NewRroject/sne/project/maintpackage/NewWSEHass!javal- EclipselBlatform
File Edit Source Refactor Navigate Search Project CompSs Run Window Help
3~ 2 & (0o &y | RYE @M B e
[Project Explorer 82 = B || Application Editor NewWSClass java &2
05 v package project.main_package;
= bJNewF'rnJem import jawvax.jws.WebService;

import javax.jws.WebMethod:

v B import integratedtoolkit.types.annotations.Orchestration;
= 3 project. main_package import java.lang.String:
b Jowl i import jawax.jws.WebParam:
P) NewWSClassitf java import project.main_package.coreelements. NewCoreElementClass;

@ project.xml
@WebService

" resources.xm|
= public class NewWSClass{

P E3 project. main_package. coreeler

=i JRE System Library [JavaSE-1.6] @WebHethod
@0rchestration
public void newOEMethod(@WebParam(name="1nput”) String input){

v

=i Element Dependencies

(& bin
b = METAINF Etring outFileName = new Strinmg("out.txt");
String outString = NewCoreElementClass.pnewCEMethod(input, outFileName);
P = output System,out. println("out string: " + outString):
}
}

=] w B
BE Outline 23 =0

5% R e W T
project. main_package
P ‘= import declarations
= @ NewWSClass

Figure 13. Orchestration Element implementation

Step 6: Check the application locally.

To check an application developed with the COMPSs runtime keeps the correct behaviour,
developers can perform a local deployment and execution of the application. It is performed
by selecting the Build and Deploy Tab in the Application Editor (Figure 8. Steps 6 and 7) and
then, selecting the Localhost deployment type.

Figure 14 shows a snapshot of the Application Editor for a local deployment. To deploy the
application locally, developers only have to define the folder to install the application
elements (App. Elements folder field) and if the application contains WS classes the location
where a Web Application Server (such as Apache Tomcat) is installed on the local machine
(App. Server Folder field). Finally, developers have to click deploy to start the deployment
process.

Once the deployment process is completed, developers will see a Deployment view with the
machines where the elements have been deployed (localhost in this case), and can also find

the generated packages in the output folder of the project and their installation in the selected

folder.

File Edit Navigate Search Project CompSs Run Window Help

= @ [as [~ |2r 5- » o ([l
[Project Explorer 3 = O || Application Editor 2 . [I] NewWSClass java 1 =g
B % < || Deployment Overview i
< & NewProject DegToge
b @ sic This section provides the interface to deploy the application in a distributed computing platform
b = JRE System Library [JavaSE-15] —
b =4 Element Dependencies Deployment Type |Localhost o] Select the deployment Type
& bin = Deployment Options
b & METAINF)
- & output App. SererFolcer | TestBeds/DE] [seteet..] Select the location to deploy the
- Bpack?gggerated Packages o cments Folder [thome/jorgee TestBedsADE Testbed/ | [setect application elements
it.properties
2 NewProject_cores jar Deploy Initiate deployment
&3 NewProject. war
@ project. xml
& resources xml
oo >
B2 Outline 23 =g
An outline is not available L
Implementation | Build and Deploy | metadata. xmi | project. xmi] resources. xm
¥ Tasks | B Console | @ Application Status % =8
= NewProject Deployment status view
Depl Undeploy the
s X
application

Identifier: NewProject Status: Deployed

0 Keop Dt

Provider: |localhost [~] Instancss

Address Type

cores 127.0.0.1
master ; 127001

0 0 items selected

Figure 14. Local deployment snapshot

Step 7: Deploy the application in a distributed infrastructure.

Once the developer has checked the correct application behaviour including COMPSs, it is
time to make the final deployment of the application in a distributed infrastructure. For doing
it, you can select one of the other deployment options and follow the specific instructions for

the selected deployment environment explained in detail in Section 0.

3. Other Functionalities

In addition to the core functionalities described in the Getting Started section, the COMPSs IDE
provides other functionalities to simplify the implementation of applications with the COMPSs
programming model. We have grouped these extra functionalities in two parts: the first part
covers the implementation phase and the second part which covers the available deployment
options.

3.1.Implementation

3.1.1. Create a Core Elements
Once an orchestration class is created a user can create a new core element, selecting the
orchestration class in the combo box and clicking “New...” in the Core Elements section of the
Application Editor. In the first page of the New Core Element wizard, the user can select the
way to add a new core element from the following options.

- Method Core Element from scratch, where the user provides all the parameters,

return type and constraints, and the wizard creates the class methods and required
annotations. This is the case explained in the Step 4 of the Getting Started section.

- Method Core Element from an existing class, where the user selects a method from
an existing class, adding only the constraints, and the wizard generates the core
element definition in the Core Element Interface

- Method Core Element from Executable, where the users select the command or
binary and their arguments, and the wizard generates the code to invoke the
executable and add the core element definition in the Core Element Interface.

- Service Core Element from WSDL, where the users select a method from a deployed
web service, and the wizard generates the service stubs and includes the service core
element definition in the Core Element Interface.

- Service Core Element from a war package, where the users select package location
and the web service method included in this package, and the wizard generates the
service stubs and includes the service core element definition in the Core Element
Interface.

New Method Core Element from Existing Class

When a developer selects the option for creating a new core element from an existing class,
the wizard will show a view (Figure 15-left) to introduce the library or class folder location,
select one of the existing classes and select the method for the new core element. Then, after
clicking “Next”, the wizard will show a view like Figure 15-right. There, some default data will
be already filled and developers only have to modify the desired parameters type and
direction (if they are different from the default values) and include constraints if it is required.

New/CorelElement NewlCore Element
Create Core Element New Core Element
Define the Core Element with the selected procedure Creates a new Core Element for an application
Element Location Element Location
Source folder: [NemeJetb’src l ‘ Browse ‘ Source folder: [NewF'mJectfsrc] | Browse ‘
Package: Ipluject.maiﬂipackage l ‘ Browse... ‘ Package: [pluject.mainipackage] | Browse... ‘
CE Interface INewWSCIassItf I ‘ Browse... ‘ CE Interface [NewWSC\assItf] | Browse... ‘
Element description Element description
. . N o Name
Library Location [fhome!]orgee!Apps!MatmquMameuItlpIy.Jar] ‘Se\ect |
Return Type | Select... |
Declaring Class [wm'ker matmul Matmullmpl] ‘Se\ect |
- Type Name Direction | Add |
Method [mult\plyAccumu\atwe] [Se\ect l
Parameters |Mudify.. |
java.lang. String fl IN —
java.lang. String 2 1N [v] | Delete |
MName “alue | Add... |
Constraints
=7 Specific Core Element Description
Declaring Class
Options [islnit] isMadifier
Method Modifiers b static [final
If?} < Back || Next > | | Cancel | | Einish | ‘\/'__7;' | < Back | | Cancel | ‘ Einish

Figure 15. New Core Element from existing class snapshots
New Method Core Element from Executable

When a developer selects the option for creating a new Core Element from Executable (binary
command, script...), the wizard will show a view (Figure 16-left) to introduce the information
to bind the Method Core Element interface with the command to run the executable. First, the
developer has to introduce the name of the class and method where, the IDE is going to create
the code to run the executable. Once it has been defined, developers has some fields to specify
the executable the arguments and the standard streams (stdin, stdout, stderr). In this fields,

we can add a reference to parameters or return values of the CE method by introducing the
pattern $<parameter_name>$ or $return_value$ respectively.

For instance, the second argument of the CE defined in figure xx-left will contain the value of
the CE method parameter called arg_from_params. This figure also shows how to return the
standard output of the executable as a return value of the CE method.

Then, after clicking “Next”, the wizard will show a view (Figure 16 - right). This is the classical
view for describing a core element. Note that the IDE has already detect the method should
include a parameter called arg_from_params and a String return type for passing the standard
output. As in the other cases, developers can complete the required element information such

as changing the parameters types and directions as well as defining the constraints required
by the executable command.

= New!Core Element f% = New!CoreElement F)'(“
Create Core Element New Core Element
Define the Core Element with the selected procedure Creates a new Core Element for an application

-Element Location

‘Element Location

Source folder: [Nemejchsrc] [Browse]

Source folder: [NewProjchsrc] [Browse]
Package: [P’UJECT main_package] [Browse..] Package [projecl main_package] [Browse...]
CE Interface [NEWWSC\ESSHT'] [Browse..] CE Interface [NewWSC\asst] [Browse...]

-Element description

‘Element description

. Name [runBlnary]
Declaring Class learyCE]
Return Type [Ja\ra.lang.Strmg] [Selecl. l
Method [ruanary]
Executable [n’pathd’lufbinary] |Type Name Clection ‘ l L]

java.lang.String arg_from_param 1N -

Parameters Madify....

~ Executable Arguments -
Delete

Text
Arguments argument1 Name Value l Add...]
arg_from_param
‘ Delete | Constraints |I.I-'u'\i1_. |
| Delete |
~ Standard Streams
Standard Input [] ~ Specific Core Element Description

Declaring Class | project.main_package. coreelements BinaryCE

Standard Cutput [$return7type$]

Options [isinit &1 isModifier

Standard Error []

Method Madifiers static [final

» Environment Variables

@ <Back | MNext> || Cancel || Finisn | @ [<Back | pew- || cancel || Einish

Figure 16. New Core Element from Executable snapshots.

After making the required changes, developers have to click “Finish” to perform the core
element creation. In this case, in addition to include the method declaration in the Core
Element Interface, the IDE also generates the code for invoking the executable file. Figure 17
shows the code generated for the previous example where you can see how the IDE also link
the CE parameters with the arguments and standard output of the command to run.

@ Application Editor [J] BinaryCE java &4 =0

package pruject‘main_package.cureelements:l
public class BinaryCE{

& public static String runBinary(String arg_from_param){
java.lang.String return_type = null;
String[] cmd = new String[3].
cmd[@] = "/path/toibinary";
cmd[1] ="argumentl";
cmd[2] =arg_from_param;

Process execProc = null:
ProcessBuilder pb = new ProcessBuildericmd);

try {
int exitvalue = @
for (int 1 = @; i < 1@; i++) {

System. out.println("Attempt " + i + " out of " + 3);
execProc = pb.start();
execProc. getOutputStream().close();

java.io.BufferedInputStream stderr_is_bis = new]ava‘m.Eufferedlmputstream(execPrDc_
byte[]stderr_is b = new byte[1824];

while (stderr_is_bis.readistderr_is_b) »>= @)}

stderr_is_bis.close();

execProc. getErrorstream().close();

java. o, InputStream stdout_is = execProc,getInputStream():

StringBuilder return_type_sb = neWw StringBuilder():

java.io BufferedReader stdout_is_br = new java.io.BufferedReader (new java.io.Inputs
String stdout_is_line:

while ((stdout_is_line = stdout_is_br.readLine()) != null)
return_type_sb.appendi{stdout_is_line);
stdout is br.close(): &)

a [B

Figure 17. Snapshot of generated for creating a CE from an executable

New Service Core Element from WSDL

When a developer selects the option for creating a new Core Element from a WSDL, the
wizard will show a view like in Figure 18-left. This view provides the interface to introduce
the location where the service WSDL is deployed. Once the WSDL is loaded, we can select one
of the services, ports and methods contained in this WSDL file. Then, after clicking “Next”, the
wizard will show a view (Figure 18-right) to complete the required element information like
in other core elements.

=

= New CoreElement FX = New Core Element =
Create Core Element New Core Element

Define the Core Element with the selected procedure Creates a new Care Element for an application

-Element Location

‘Element Location

Source folder [NewPrOJectfsrc] [Browse. l Source folder. INE“’P"'JEEUS’C] I Browse... I
. Package: 1. ke B
Package: [prujecl.mam_package] [Browse. l FHEE Ipmjec [han_paciage l l romse I
CE Interface lNewWSCIassItf l l Browse... I
CE Interface [NewWSCIass\tf] [Browse.]
-Element description
-Element description Name [parseBlasiDs |
WSDL Location [http:!fbscgrldUS.bsc.es:2l]390fb|otoo\sfblotools?wsdl I Ratum Type [core gensdatzct BlastiDs | ISe\ect.. I
Semwice [BiUTUU|S] [Se\ecl... l e Name Direction Add

Port [BloTooIsPort] [Se\ect...l Parameters [k IR
Delet
Method [parseB\aslIDs] [Se\ecl...] —

MName | Value l Add...]

Constraints |\.\u-||f_.- . |

| Delete. |

~ Specific Core Element Description

Senvice Name |E-\‘:-T‘:--:‘h |

Senice Name |hm-:

nedetect.core |

Port Name |Ei\r-'l7

Locations
@ < Back “ Next > H Cancel H Finish] @) | <Back | uevi- [Cancel || Finish

Figure 18. New Core Element from WSDL snapshots.

After making the required changes, developers have to click “Finish” to perform the core
element creation. In this case, in addition to include the method declaration in the Core
Element Interface, the IDE generates the classes used by the service as well as the stubs to
invoke the service from the Orchestration Element. The generated classes can be found in the
generated folder of the COMPSs Application project as depicted in Figure 19.

[t Project Explorer 22 B & ¥ =8|
] P =

= [Bsic ~

b 3 project.main_package
b 3 project.main_package.coreelements
b =\ JRE System Library [JavaSE-1.6]
P =) Element Dependencies
= [# generated
D 8 core genedetect
= 8 dummy. genedetect. core BioTools. BiaToolsPor

» 0 BioTools java

= bin
b = META-INF
P = output v
< 2]
(D; Fitlinn &7 = Fﬂ

Figure 19. Generated class snapshot.
New Service Core Element from WAR package

The option for creating a new Core Element from a WAR package is very similar than the
previous option. When a developer select this option, the wizard will show a view like Figure

20-up-left. There, the developer has to select the location where the WAR package is in the
local host. Then, the IDE will extract the package, and afterwards the developer has to select
the WSDL file (Figure 20-down-left) and URL pattern which contains the service description.
Finally, the developer has to select the Service, portand method like in the previous case (new
CE from WSDL). Then, after clicking “Next”, the wizard will show a view (Figure 20-right) to
complete the required element information (return type, parameters and constraints).

New|CoreElement. NewiCoro Eloment
Create Core Element New Core Element
Define the Core Element with the selected procedure Creates a new Core Element for an application
Element Location Element Location
Source folder: [NewPrDjectfsrc] | Browse... | Source folder: [Nemejen:tfsm l | Browse |
Package [plnjel:t main_package I | Browse | Package: [prnject main_package] | Browse |
CE Interface [NewWSCIassItf l | Browse. .. | CE Interface [NewWSCIassItf] | Browse... |
Element description Element description
. Name
WAR Location [fhomea’JorgeeprpSJGeneDetect\onIb\oloo\s.war] |Select... |
Return Type ‘ Select... |
WSDL Location [fhDmeﬂorgeefcleaniworkspacefNewProJchoutput] |Select... | —
- - i Add...
URL pattern [blotoolsfblotuolsf"] |Se|ect... | Type fape - (zctiog | ‘
Parameters |M0dify... ‘
Semice [BioTooIs] |Se|ect... |
| Delete ‘
Port [BioTooIstt] |Se|ect... |
Name Value | Add ‘
Method [\nadAminnAEidSequence] [Salect l
Constraints
SelectWSDLEFile
=7 Specific Core Element Description
| ,/'| | < ” NewProject H output ” war_tmp HWEB-INF H wsdl| Senvice Name
Lugar: [BinTnnIs wsdl] Senvice Name
. Port Name
Lugares MNombre ~ | Tamafio Modificado
QBuscar 6 B d KIB 08/0 | s |
&) Usados Locations E—
@ jorges e
Escritario
| Sistem...
—
*wsdl | & ‘
N SE— .
| Cancelar | [Aceptar ‘ @) | < Back | | Cancel ‘ [Einish

Figure 20. new Core Element from WAR Packages Snapshots.

3.1.2. Invocation of Core Elements from the Orchestration Element Code.
Once the developer has defined the Core Elements in the Core Element Interface, the next step
is invoking them form the Orchestration Element code. As a general rule, the invocation of
core elements is done in the same way as you call a normal Java method. In next paragraph,
we are going to refresh how to invoke them, including some details you must take into
account when programming the Orchestration Elements.

Invoke Method Core Elements

In Java there are main types of methods: Class and Object methods. Class methods are static
methods which make their computation only using the method arguments or static class
properties. They are invoked as the example shown below:

ClassName. staticMethodName(argumentl, argument2);

Object methods use the values of an object properties in addition to the method arguments to
perform the computation and can also modify these object properties. To invoke this method
you need to have an object to perform the method call. An example of this type of calls is
shown below:

ClassName object = new ClassName();
Object.objMethodName(argumentl, argument2);

For this type of call, the COMPSs runtime introduce an implicit parameter, which is the object
where the call is performed. By default, this parameter is treated with an INOUT direction
because every object method can update whatever object property. This implies that the
object could be different at the end of the method execution and the runtime must be aware of
this. If developers know that a method, defined as core element, does not modify the object
properties, we recommend marking this core element as Not Modifier in the Core Element
Interface. It can be done by including the Method annotation property isModifier equals to
false. If it modifies the object or the developer is not sure, keep the default value (isModifier
=true) to ensure the application is working properly.

Invoke Service Core Elements

When we define a service core element, the IDE creates the classes to invoke the service
methods from the orchestration elements code. Most of the created classes are the data types
used as arguments of the method services, but we also generate a “dummy” stub to make the
method invocation. We call it “dummy” because the code of this stub will never be executed.
The runtime will intercept the call to this stub and will perform the real invocation of the
remote service. As java methods, there are two types of web services calls: stateless and
statefull.

On one hand, the stateless service calls invoke method whose execution does not modify the
service state. So, we could invoke them in the orchestration code as static calls by invoking the
method in the Static version of the service class. An example is shown below:

import org.namespace.ServiceName.ServicePort.*;

import org.namespace.DataTypeClass;

DataTypeClass result = ServiceName.Static.statelessMethodName(argl, arg2);

On the other hand, the statefull service calls invoke methods that modify the service state.
This must be reflected in the orchestration code in order to make a proper management of
dependencies between the web service calls. Note that statefull service calls have a lot of
similarities with the object method calls. For this reason, you have to use the same procedure
in both cases. To indicate a sequence of service calls are statefull you must invoke it as a
service object method. An example is shown below:

import org.namespace.ServiceName.ServicePort.*;

import org.namespace.DataTypeClass;

DataTypeClass result = ServiceName.statefullMethodName(argl, arg2);

3.1.3. Manage Application Elements Constraints
Once an application element (Orchestration or Core) is created it can be selected in the

corresponding Orchestration/Core Elements section of the Application Editor. The description
of the element will be printed in the Orchestration/Core Element Description section. This
section contains a General Description expandable item, which contains a Constraints table and
a set of buttons to add, modify and delete constraints (Figure 21-left).

& Application Editor 32 =&

= Core Element Description (~]
This section provides the interface to manage the selected core element.

~ General Description

MName [multip\yAccumuIative]

Return Type [vmd

Type
Java.lang.String
Parameters | jaya lang. String Modify. .. -
java.lang.String : Mame [plncessolAlchnectum | v |
Value |86 64 |
Name Value Add
Constraints Modify. L | | Cancel | | (0]54 |
Delete

+ Specific Description
+ Elasticity Description

» Dependencies Description

(]
a |)

Implementation | Build and Deploy | metadata.xml| project.xml| resources. xml

Figure 21. Add Constraint to Application Element Snapshots.

Developers can add constraints by clicking “Add..” and a new window (as depicted in Figure
21-right) will be open to select the type of constraint and set the value of the selected
constraint. In a similar way, developers can modify the constraints values by selecting the
desired constraint in the Constraints table and clicking “Modify...” and window to modify the
constraint value will be open. Finally, to delete a constraint, developers only have to select the
constraint in the Constraints table and click “Delete”.

3.1.4. Add Elasticity Boundaries to Application Elements
Once an application element (Orchestration or Core) is created, it can be selected in the
corresponding Orchestration/Core Elements section of the Application Editor. The description
of the element will be printed in the Orchestration/Core Element Description section. This
section contains an Elasticity Description expandable item, where developers can specify the
maximum and minimum number concurrent core element executions (Figure 22).

~ Core Element Description
This section provides the interface to manage the selected core element.

» General Description
» Specific Description

= Elasticity Description

Minimum Maximum

» Dependencies Description

Figure 22. Elasticity Description Snapshot.

3.1.5. Manage Application Element Dependencies
The application element implementations can depend to external libraries or require binaries
or configuration files to run correctly. For this reason, developers can define dependencies in
the application element descriptions. So, when an element is deployed in a distributed
environment their dependencies will be also deployed to the selected location.

~ Core Element Description
This section provides the interface to manage the selected core element.

» General Description

+ Specific Description
» Elat n
Type [JAR Library | ~ |
Type _ Path Location [IfMatrixMuItipIy.j:l |Select... |
JAR Library fhomeljorgeeffpps/Matmul/MatrixMultiply. jar =
Delete | Cancel | | oK |

Figure 23. Dependency Description Snapshots.

Once an application element (Orchestration or Core) is created, it can be selected in the
corresponding Orchestration/Core Elements section of the Application Editor. The description
of the element will be printed in the Orchestration/Core Element Description section. This
section contains a Dependency Description expandable item (Figure 23), where developers can
specify the packages, folders or files required to successfully execute an application element.

3.1.6. Define a COMPSs Application from existing war and jar packages
Once a COMPSs application project is created, a developer can import an application from
existing packages by importing orchestration classes, defining orchestration and core
elements from the classes and libraries contained in those packages.

To import an orchestration class, click “Import...” in the Orchestration Classes section of the
Application Editor. Then, a new wizard, like Figure 24, will be open. There, developers can
select the location of the package which contains the orchestration class. This is performed by
clicking the “Select...” button in the Package Location field, and selecting the package file.

If the orchestration class to import is within a ZIP or WAR package, the IDE extracts the
package in the imported/PackageName folder. Then, developers have to indicate the JAR
library or class folder inside the extracted package. This is done by clicking the “Select...”
button of the Sub-package field and selecting the location of the JAR file or the class folder.

In the last step, developers have to select the orchestration class by clicking the “Select...”
button and selecting one of the classes in the list. After that, the selected class will appear in
the Orchestration Classes section of the Application Editor.

Ci~ | %~ Import COMPS s Application Class
[# Package Explorer 32 Select COMPSs Application Class to import
E Select COMPSs Application Class to import
T Conversor
= g‘ljavaprujg’:frgsl Package Location [lhomeijnrgeet’cleaniwnrkspaceiGeneDetectmn\] ISeIect]
¥ Bsic Bl
~ [java.project.test Sub-package (if any jar) [fh(lmEfJﬂl’gEEfE|EEH7kaSp3EEHHH‘aPFUJE[:[TESL] ISEIEM]
[2K MainClass.jav:
® project xml Orch. Class [cnmjhlahs image. AverageFilter] ISEIEM]
L]
@ resources.xml
[java.project.test.c - ClassiSelection rg Mo,
P =i JRE System Library =
~ =) Elemant Dependenci Choose a class from the list -
b & compss-rtjar- /o) [comjhlabs image| "]
b 2% imported/GeneDe Matehing fom
4 Filters jar - /home| (=T WS
. ‘€. ImageCombiningFilter - cam jhlabs.image
P = hin
b e imported @ @ ImageFunction2D
< = METAINF ©@ ImageMath
@ metadata. xml ©" ImageUtils
(= output
Im) ml | resources. xml
] ————————
2
ol C [|
E ‘cumjh\abs image - /ho...EB-INF/lib/Filters jar | e Path
D))«
O E——D| e [cancel [ok | %
=6
e |

Figure 24. Import an Orchestration Class snapshot.

Once the orchestration class is imported, developers can define orchestration elements from
the methods within the imported class. This process is started by clicking “New” in the
Orchestration Elements section of the Application Editor. A new window, like Figure 25, will
appear. There, developers can select the method to be defined as Orchestration Element, and
specify the element constraints.

[# Package Explorer 53 =0 @A[
& - Imple Method [][Select.]
1 Conversor Orch 1
This Name Value 1
v @se Crch
b com jhlabs.image Constraints
~ i java.project.test —]
P [J] MainClass.java This 1
roje c
o) [cro][o)
B3 java.prel chopse a Mathod from the selected class
P =i JRE Syste
= @i Element D Ib]
b i compss | @ © hias(float, float)
b (2importe = " hilinearInterpolateffloat, float, int, int, int, int)
b b Filters.j| | o hrightnessNTSC(int)
b (= hin !
b = imported
~ (= META-INF
@ metada
(= output xml| project xml | resources.xml

tmn]

l Cancel l [0K] Resource Path

Figure 25. Add Orchestration Element in imported Class snapshot

For the Core Elements, the process will be the same as the creating New Core Elements from
existing classes. See more details of this process in Section 3.1.1.

3.1.7. Convert aJava Project to COMPSs Application Project
Another option to create applications with the COMPSs Programming Model and IDE is
selecting or creating the orchestration and core from an existing Java project. To do this,
developers have to convert the existing Java project into a COMPSs application proje ct and

afterwards, select or create the core elements as indicated in previous sections.

The IDE has a wizard to convert a Java project to COMPSs application project. This wizard can
be started in two ways: one selecting the project in the Eclipse project explorer, click the left-
button of the mouse, and select COMPSs->Convert to Application Project in the pop-up menu
(Figure 26-left); and another opening the CompSs menu and selecting the Implementation->
Convert to Application Project (Figure 26 -right).

[% Package Explorer 5 =g

1 Conversor

" v

New
Go Into
Open in New Window
Open Type Hierarchy
Show In

Lopy
Copy Qualified Name
Paste

Delete

Build Path
Source

Refactor

Import.

Expart...

Refresh

Close Project

Assign Warking Sets...

Run As

Debug As

Profile As

Validate

Team

Compare With

Restore from Local History,

F4
Shift-+AlLHNY >

Ctri+C

Ctrl+V

Delete

>

Shift+Alt+S >
Shift+Al+T >

F5

(1]

Java" EclipsePlatio

Eile Edit Source Refactor Mavigate Search Projes

B Ov Q- | & G-

[Package Explorer 52 =g

=& v

1 Conversor
b

@ Javadoc @; Declaration

Resource |

Checkstyle
Configure

Propertiss

Alt+Enter

Bun Window Help

n

Create Orchestration Class
Add Orchestration Element
Add Core Element

Create Application Project

Figure 26. Snapshots for starting the wizard for convert project to a COMPSs application project.

As result of these actions, the IDE will open the wizard (Figure 27), with the difference that, in
the first case, the selected project will appear in Project Name, while in the second case, the
user has to select the project from a list.

Figure 27. Convert to COMPSs Application wizard snapshot.

New COMPSs Application Praject

Convert Project from Java to COMPSs Application

This wizard allows users to covert a Java project to a COMPSs
Application project

Project Name [javaF'lUjecITesl] | Select...

Main Package [java project.test] | Select

Runtime Location

Runtime Location [;’opUCOMF‘Ss l [Browse..

@) | Cancel | ‘ Finish

Once developers have converted the project, they can also convert one of the current project
classes into an orchestration class following the same procedure as explained in Section 3.1.6
for importing an orchestration class. To do it, developers have to click “Import...” in the
Orchestration Classes section of the Application Editor and the import wizard will be open. If
we do not define any package and click directly to the “Select...” button of the Orch. Class field,
the Class Selection dialog will show the existing class in the converted project (Figure 28). So,
developers can select one of them to convert it into an orchestration class.

b~ B Import COMPSs Application Class
& Package Explorer 32 Select COMPSs Application Class to import
=| Select COMPSs Application Class to import
7 Conversor
d Ta'djavaPrnJectTest Package Location [] |Se|ect |
= (#src
P 1 com jhlabs.image | Sub-package (if any jar) [] |Se|ecl...|
~ {1 java.project test
> [J] MainClass.java| Orch. Class [] |Selec1...| he
i
S proje -
= 55" cti
B roso (Class Selection
£ java.proj
b =i JRE Syste Choose a class from the list -
~ e\ Element Dg [”]
P g compss Matching items:
b & hin Cancel | | Finish
= (= META-INF M
@ metadat
(= output
M [
eploy | metadata. xml| project. xml | resources. xml
doc @ Declaration
£ java.project.test - javaProjectTest/src
Resource Path
(e @ [Cacal |[ok |

Figure 28. Snapshot for defining an existing class as orchestration class.

Once the existing class has been converted, developers can create new orchestration element
(as explained in Section 2. Step 3) or can select an existing method to be defined as
orchestration element. To perform the second option, developers just have to click the
“New...” button of the Orchestration Elements section located on the Application Editor and
click “Select...” in the Name field of the New Orchestration Element wizard (Figure 29). Then, a

Method Selection dialog will be open, and developers can select one of the methods declared in
the converted class.

At this point, the converted project, class and orchestration element can be considered as if
they were created from scratch. So, definition of core elements and other functionalities can
be applied as described in the different sections of this guide.

.

File Edit Navigate Search

New Orchestration Element

J - J %~ O New Orchestration Element
- Creates a new Orchestration Element for an application
[Package Explor 22 =
& Orchestration Element Location
i, =
s Source folder: [javaPmJectTest.’src] [Browse l
onversaor R
< 2 javaProjectTest Package [Ji“‘i‘-P’C'JECt test] [Browse.. l This section provides the interface to man
v @i Orch. Class [MamC\ass] [Browse l Location |fopt/COMPSs
b £ com jhiabs.image [:
= i java.project.test Orchestration Elemant Description
b [MainCi . « Core Elements
antlass java s [] [Se\ect I This section provides the interface to man
P[] MainClasskf java class
@ project. xml

@ resources xml (¥eclider [private [static

HH java.project test.core
b = JRE System Library [Ja

Method|Selection

Return Type [

= @i Element Dependencies []

b i compss-rtjar - fopt/! Type| Name
b = bin Parameters
= = META-INF escription

@ metadata. xml
(= output
Mame Valuz
Constraints

O Part of the

e Interface

5
T —T— ’
v =8

(T @

J Cancel Einish ‘
i

Figure 29. Snapshot for selecting an existing method as Orchestration Element.

3.2.Deployment

The COMPSs IDE allows developers to easily deploy and run applications in different
infrastructures. To achieve it, developers have to select the deployment option, fill the
configurations fields for the selected option and click “Deploy”.

3.2.1. Deployment Options

Deployment in Private Grid

The COMPSs IDE allows developers to easily deploy and run the application across a set of
hosts distributed through the internet. To perform it, developers have to select the “Private
Grid” deployment type in the Build and Deploy tab of the Application Editor. After selecting this
option, several expandable menus will appear to configure different aspects of the application
deployment. These are going to describe in detail in next paragraphs

Resource Selection

The first step a developer has to do is defining and selecting the resources of their private grid
which are going to be used for this deployment. This information has to be introduced in the
Resource Selection section as you can see in Figure 30.

u]

& Application Editor 2 =
UERIUYITIENL UVETVIEW

[1>]

Deployment
This section provides the interface to deploy the application in a distributed computing platform

Deployment Type | Private Grid < ‘

- Deployment Options
- Res
Select the resources to be used in the deployment from the available ones

Grid Resources
Impart.. Create...

Master Resource

Worker Resources

Reset | | Save

» Resource Deployement Properties

» Shared Disks Definition]

Implementation | Build and Deploy | metadata. xml | project.xml | resources. xml|

Figure 30. Snapshot of the Resource Selection part for the Private Grid deployment.

The resources definition can be imported from a file or create it from scratch. For the former
case, developers have to click “Import...” and select the xml file which contains the resource
definition with the COMPSs resources format. For the latter case, developers have to click
“Create...” for creating a new resource definition. As result of this click, a dialog like Figure 31
will be open, where the developer can introduce the resource details. The Resource field will
be used by the runtime to connect to this host. So, it must contain the either the Fully Qualified
Domain Name of the resource or it I[P address.

Resource [|]

Hardware Froperties

Processor Architecture

Processor Speed

Memory Size

[
l
Processor Count [
l
l

Storage Size

Hardware Properties

Cperating System []

Add... |
Installed Software —
Host Properties
Task Count l
| Add... |
Available Queues —
| Cancel | | oK |

Figure 31. Snapshot of the Grid Resource creation dialog.

Developers can also update existing resource definition by clicking “Update...” and selecting
the resource to update in the dialog window; or deleting resource definitions by clicking
“Delete...” and selecting the resource to delete in the dialog window.

The mostimportant thing to define in this step is selecting which of the defined resources are
going to be used as master or worker nodes. On one hand, the master node is defined by
choosing a node from the Master Resource combo box. On the other hand, worker nodes are
defined by passing the desired resources from the list on the left to the list on the right. To
pass a resource the developer has to select the resource in the list and click “>”.

Define Deployment Information

The second step for deploying the application in a private cloud is to define the information to
access and install the application in the selected resources. Developers can define this
information in the Resource Deployment Properties section (Figure 32). For each resource, the
developer has to define the username, the folder to install the application, the folder used by
the runtime as working directory (a folder to store renamed and temporal files), and in case of
the application contains web services, the location of the application server container.

The IDE, like COMPSs, uses SSH DSA keys to connect nodes. It is important that all the users
used in each Grid nodes have properly installed the same key in the authorized_keys file located
in SHOME/.ssh

@Application Editor 22 =0

= Deployment Options

+ Resource Selection

Describe the resource properties for deploying the application.

Resource | | W |

Username

Install Falder

Working Folder

App. Server Folder

Reset | | Save

<]

Implementation | Build and Deploy] metadata.xml| project.xml| resources.xml|

Figure 32. Snapshot of the Resource Deployment Properties section for a private Grid deployment

Define Shared Disks

In the case of a shared disk space is available on the private Grid, it can be defined in the
Shared Disks Definition section (Figure 33). There, developers can introduce a share disk
definition by clicking “Create...”, introducing a name for identifying the shared disk, and the
mount point for each resource that can access to this shared disk.

@ application Editor 22 =0

Deployment Overview

Deployment
This section provides the interface to deploy the application in a distributed computing platform

Deployment Type | Private Grid <

= Deployment Options
» Resource Selection
+ Resource Deployement Properties

= Shared Disks Definition:
Define the existing shared disks between the selected resources.

Shared Disk | b | [Create...] Delete

Master mount path | |

Resource | Mount path

Resources mount paths

Reset | | Save

+ Data Staging

Implementation | Build and Deploy‘ metadata.xml| project.xml| resources.xmll

<|

Figure 33. Snapshot of the Shared Disk definition section for a Private Grid deployment.

Define Data Staging

Another optional step is the Data Staging. If the execution of your application require input
files or generate output files, the IDE can upload and download them from the master node
before and after the application execution. These files have to be defined in the Data Staging
section (Figure 34) by defining the path of the Source File and the Destination Folder. In the
stage-in case, the Source File must include the path and file name in the local host and the
Destination Folder should be the location in the remote master node. In the stage-out, the
Source File must include the path and file name in the remote master node and the Destination
Folder should be the location in the local host

@& application Editor 3 -0

Deployment Overview =

Deployment
This section provides the interface to deploy the application in a distributed computing platform

Deployrment Type | Private Grid s

- Deployment Options
» Resource Selection

» Resource Deployement Properties
d Disks Definition

Specn‘y the application data transfers before and after application execution.

Source File Destination Folder
Add. ..

Stage-in Files

Source File Destination Folder
Add. ..

Stage-out Files

Deplay

Implementation | Build and Deploy | metadata. xml | project.xml | resources.xml

Figure 34. Snapshot of the Data Staging section for a Private Grid deployment.

Once the configuration has finished, developers can start the application deployment by
clicking “Deploy”.

The IDE uses the Eclipse Ant plugin with JSCH library to make copy and execute command
remotely. The JSCH library (jsch-0.1.xx.jar) is automatically copied to the $HOME/.ant/lib folder.
However, some Eclipse installations do not properly detect the jars installed in this folder. If the
deployment fails because Ant does not find JSCH classes, you must manually configure the Ant
Plugin to use the JSCH libray. It can be done by adding this jar ($HOME/.ant/lib/jsch-0.1.xx.jar)
as a Global Entry of the Ant Runtime configuration. This configuration can be found in menu
Window->Preferences and once in the Preferences page select Ant->Runtime

Deployment with the Enactment Service

The COMPSs IDE allows developers to easily deploy and run the application in cloud
environments through the COMPSs Enactment Service. To perform it, developers have to
select the “Enactment Service” deployment type in the Build and Deploy tab of the Application
Editor. After selecting this option, several expandable menus will appear to configure different
aspects of the application deployment. These are going to describe in detail in next
paragraphs:

Define Storage Service

The Storage Service section (Figure 35) is used to define the details of the Storage Service used
to manage the application files in a remote storage. This section is divided in three parts: the
Credentials part, the Location part and the Application part.

In the Credentials part, developers just have to specify the username and password to access
the storage service. The Location part is used to define the endpoint reference of the Storage
Service, defining the hostname, protocol and port (if it is not standard). Finally, developers
can configure the details of the application location inside the storage service in the
Application part.

@ application Editor 53 ~ O

Deployment (]
This section provides the interface to deploy the application in a distributed computing platform [

-~

Deployment Type | Enactrment Senice <

- Deployment Options

~ Storage Service
Define the storage senvice for uploading the application data.

Credentials

Username [l

Passwaord [l

Location

Protocol [| b4 | Port [l

Hostname [l

Application

Application Folder [l

Stage-in Folder [l
Source File Destination Folder —
| Add... |
Stage-in Files ||
Stage-out Folder l
File R
[Add. |

Stage-out Files

Logs Falder [l

|Reset | |@|

Implermentation | Build and Deploy | metadata.xml | project.xml | resources.xml

Figure 35. Snapshot of the Storage Service section for a deployment with the Enactment Service.

More in detail, the Application Folder, contains the folder where the application package will
be uploaded in the Storage Service. The Stage-in, Stage-out and Logs Folders define the folder
where the application package, stage-in, stage-out and log files will be stored in the Storage
Service. Finally, the Stage-in and Stage-out Files define the data staging required to run the
application. In the stage-in case, the Source File field must contain the path and filename of the
stage-in files in the local host, and the Destination Folder must contain the path to store this
file in the master Cloud VMs, while, in the stage-out case, developers only need to specify the
path of application output files in the master Cloud VMs. These files will be automatically
uploaded to the Storage Service in the location indicated by the Stage-out Folder once the
application run finishes.

Define Enactment Service

The Enactment Service section (Figure 36) is used to define the details of the service used to
run the application in a Private Cloud. As in the Storage Service section, it is also divided in
three parts: the Credentials part, the Location part and the Application part.

In the Credentials part, developers have to specify the username and password to access the
Enactment Service. The Location part is used to define the endpoint reference of the
Enactment Service. Finally, developers can configure application details like the VM image, the
maximum and minimum number of VMs and the wall-clock-limit in the Application part.

@™ Application Editor 53 =5

Deployment Overview

Deployment
This section provides the interface to deploy the application in a distributed computing platform

Deployment Type | Enactment Senice ol

-1 Deployment Options
» 5 e

~ Enactment Service
Frovide the configuration of the enactment senice for deploying the
application

Credentials

Username [l

Password [l

Location

Senice Endpoint [l

Application
WM Image [

Maximum Vs [

Minimum Vs [

Wall Clock Limit |

Deploy

Implementation | Build and Deploy | metadata.xml| project. xml | resources.xml

Figure 36. Snapshot of the Enactment Service section for a deployment with the Enactment Service.

Once the configuration has finished, developers can start the application deployment by
clicking “Deploy”.

The current version of the Enactment Service only supports the execution of applications with
a single Orchestration Element which is the main method of the application. If you try to deploy
and run other type of applications with this deployment option you will get an error message
during the deployment process alerting about it.

Calling the Enactment Service require importing the Enactment Service credential on the JRE
KeyStore.

keytool -import -file bscpmes.cer -alias pmes -keystore $JAVA_HOME/jre/lib/security/cacerts

If you are running Eclipse with the Java 6, you should add the WSIT libraries in the java
endorsed directory and define itin the JVM options of the Eclipse launch script

-Djava.endorsed.dirs=<path_to_libraries_dir>

3.2.2. Select the Main Class
Once deployment process has been started, the IDE performs the compilation,
instrumentation and packaging of the application and the deployment in the selected
distributed infrastructure. If during this process the IDE detects an application is not a Web
Service, the IDE will ask the developer if she/he want to select the class which contains the
application main method (Figure 37).

/\ HMMERpfam create jar file packages. Do you want to define the main class?

©

Figure 37. Snapshot of the main class warning.

If click yes, the IDE will open a window, as Figure 38, to select where it can find the main
class. The process is the same as for selecting existing classes and it was explained in sections
3.1.6 and 3.1.7. If the main class is an imported class, the developer has to specify the package
location and select a class from the package otherwise she/he just has to select a class.

v Select main class
= | Selectthe class which contains the main method.
Select the class which contains the main method. It must be executed when running the application
The class could be selected from existing classes (leave package and sub-package location empty)
Package Location l l ‘Select |
_[Sub-package (if any jar) I l ‘Select . |
Orch. Class I l ‘Select |
Class Selection
Choose a class from the list v
Impl [? I?]
,;_ 5 @:. Matching items: | Cancel | | Finish
[cH CommandLinefrgs
=

© HMMPFamimpl

B es bsc.hmmerpfam - HAMERpfam/src

@:‘ | Cancel ‘ ‘ OK |

Figure 38. Snapshots for selecting the main class

3.2.3. Application Status View
Once the deployment has finished, the IDE shows the state of the application deployment in
the Application Status view. In general, this view (Figure 39) shows the application identifier,
the status of the deployment and a combo and a table to show where the different parts of the
application has been deployed. Additionally, it also contains the “Updeploy” button and the

Keep Data checkbox for un-deploying the application with option of removing or not the
service data.

| 5 Problems @ Javadoc |[2, Declaration lﬁApplication Status I

~ GeneDetectionBroker

Deployment Management

[=]

|dentifier: GeneDetectionBroker Status: Deployed Undepl0y| [] Keep Data

Provider: |Private Grid | ~ | Instances

Address | Type

cores_1 biscgridlb bsc.es
cores_0 biscgridds bsc.es
master biscgridds bsc.es

Figure 39. Snapshot of the Application Status view for a service deployment.

For web service applications, the IDE also starts the application server during the deployment
process. The user do not need to do anything more to start the application, just invoke the
service. In the case of JAR application, the IDE only copy the application files during the
deployment process. Therefore, the Application Status view includes the “Start Execution” and
“Cancel Execution” in this case (Figure 40). These buttons allow developer to start and cancel
the application execution in the distributed infrastructure.

3 Problems {@ Javadoc ﬂ% Declaration (@ Application Status ¥

= HMMERpfam

Deployment Managerment

Identifier: HMMERpfam

Status: Deployed

Pravider: [Privste Grid | v] Instances:

Address Type

cores_1 | bscgrid0B.bsc.es
cores_0 | bscgrid05.bsc.es

master | bscgrid05.bsc.es

Figure 40. Snapshot of the Application Status view for a Jar application deployment.

Known Limitations

This version of the COMPSs IDE contains a set of known limitations. They will try to be solved
in next releases.

Current version of the IDE does not support deleting Orchestration and Core elements from
the service editor. You must do it by hand deleting the annotations in the Orchestration class
or the Core Element Interface.

PMES Deployment is limited to applications supported by the PMES tool. They are JAR
applications created from scratch with a default main Orchestration Element.

References

[1] Eclipse Platform web site. https://www.eclipse.org/

[2] Eclipse Marketplace web site. http://marketplace.eclipse.org/

[3] Oracle VM Virtual Box web site. https://www.virtualbox.org/

[4] COMP Superscalar web site. http://compss.bsc.es/

[5] Apache Subversion web site. http://subversion.apache.org/

[6] Apache Maven web site. http://maven.apache.org/

https://www.eclipse.org/
http://marketplace.eclipse.org/
https://www.virtualbox.org/
http://compss.bsc.es/
http://subversion.apache.org/
http://maven.apache.org/

