
Edge-to-end data
workflows

Rosa M. Badia, Javier Conejero, Daniele
Lezzi, Raül Sirvent

23/05/2023 Solid Earth and Geohazards in the Exascale Era

Agenda

9:00 – 11:00 Introduction by Masters
Presentation by students (30 min each in total, including discussion and
interaction)

11:00 - 11:30 Break

11:30 - 13:30 Presentation by students (30 min each in total, including discussion and
interaction)

13:30 - 14:30 Lunch break

14:30 - 16:30 Master pitch presentation
Master Class Plenary Session (more collective discussion)
Lessons learnt

16:30 – 17:00 Break

17:00 - 19:00 Hands-on

Main element: Workflows in PyCOMPSs

• Sequential programming, parallel execution
• General purpose programming language + annotations/hints

• To identify tasks and directionality of data

• Builds a task graph at runtime that express potential concurrency
• Tasks can be sequential and parallel (threaded or MPI)
• Offers to applications the illusion of a shared memory in a

distributed system
• The application can address larger data

than storage space: support for Big Data apps
• Support for persistent storage

• Agnostic of computing
platform

• Enabled by the runtime
for clusters, clouds and
container managed clusters

3

@task(c=INOUT)
def multiply(a, b, c):

c += a*b

PyCOMPSs syntax

• Use of decorators to annotate tasks and to indicate
arguments directionality

• Small API for data synchronization

4

Main Program

Tasks definition
@task(c=INOUT)
def multiply(a, b, c):

c += a*b

initialize_variables()
startMulTime = time.time()
for i in range(MSIZE):

for j in range(MSIZE):
for k in range(MSIZE):

multiply (A[i][k], B[k][j], C[i][j])
compss_barrier()
mulTime = time.time() - startMulTime

Synchronization

• Main program and tasks do not share the same memory spaces

• The synchronization compss_wait_on waits for tasks generating the parameter to be finished and
moves the data from the remote node to the node where the main program is executed:

• Tasks can be also synchronized with a barrier

a = compute (b)
#compute is a task, here we can not check the value of a
...
a = compss_wait_on (a)
#here we can check the value of a
if a:

...

startMulTime = time.time()
for i in range(SIZE):

compute (A[i], B[i])
compss_barrier()
mulTime = time.time() - startMulTime

Other decorators: Tasks’ constraints

• Constraints enable to define HW or SW features required to execute a task
• Runtime performs the match-making between the task and the computing nodes
• Support for multi-core tasks and for tasks with memory constraints
• Support for heterogeneity on the devices in the platform

@constraint (MemorySize=1.0, ProcessorType =”ARM”,)
@task (c=INOUT)
def myfunc_other(a, b, c):

...

@constraint (MemorySize=6.0, ProcessorPerformance=“5000”, ComputingUnits=“8”)
@task (c=INOUT)
def myfunc(a, b, c):

...

Failure Management

• Tasks can raise exceptions

• Combined with groups of tasks enables to cancel the
group of tasks on the occurrence of an exception

• Interface that enables the programmer to give hints
about failure management

• Options: RETRY, CANCEL_SUCCESSORS, FAIL, IGNORE
• Implications on file management:

• I.e., on IGNORE, output files: are generated empty
• Possibility of ignoring part of the execution of the

workflow, for example if a task fails in an unstable
device

• Opens the possibility of dynamic workflow behaviour
depending on the actual outcome of the tasks

@task(file_path=FILE_INOUT, on_failure='CANCEL_SUCCESSORS’,
time_out=‘$task_timeout’)
def task(file_path):

...
if cond :

raise Exception()

def test_cancellation(file_name):
try:

with TaskGroup('failedGroup’):
long_task(file_name)
long_task(file_name)
executed_task(file_name)
comp_task(file_name)
cancelledTask(FILE_NAME);
cancelledTask(FILE_NAME)

except COMPSsException:
print("COMPSsException caught")

write_two(file_name)

@task(file_path=FILE_INOUT)
def comp_task(file_path):

...
raise COMPSsException("Exception raised")

L L

E

T

C C

Other decorators: linking with other
programming models

• A task can be more than a sequential function
• A task in PyCOMPSs can be sequential, multicore or multi-node
• External binary invocation: wrapper function generated automatically
• Supports for alternative programming models: MPI and OmpSs

• Additional decorators:
• @binary(binary=“app.bin”)
• @mpi(binary=“mpiApp.bin”, runner=“mpirun”, processes=8)
• @ompss(binary=“ompssApp.bin”)

• Can be combined with the @constraint and @implement decorators
8

@binary(binary=“app.bin”, workingDir=“/myApp”)
@task()
def func(l):

pass

Support for MPI tasks

• Resource manager aware of multi-node tasks

9

@mpi (runner="mpirun", processes= ”32”, processes_per_node=8)
@task (returns=int, stdOutFile=FILE_OUT_STDOUT, stdErrFile=FILE_OUT_STDERR)
def nems(stdOutFile, stdErrFile):

pass

Launches MPI execution with
32 processes
8 processes per node

Node 0 Node 1 Node 2 Node 3

PyCOMPSs runtime

• Runtime deployed as a distributed master-worker
• All data scheduling decisions and data transfers are performed by the runtime
• Support for elasticity

COMPSs in a fog-to-cloud architecture

• Decentralized approach to deal with large amounts of data

• New COMPSs runtime handles distribution, parallelism and heterogeneity

• Runtime deployed as a microservice in an agent:
• Agents are independent, can act as master or worker in an application

execution, agents interact between them
• Hierarchical structure

• Data managed by dataClay, in a federated mode
• Support for data recovery when fog nodes disappear

• Fog-to-fog and Fog-to-cloud

Workflow

HPC Software

Interfaces to integrate HPC/DA/ML

• Goal:
• Reduce the required glue code to invoke

multiple complex software steps
• Developer can focus in the functionality,

not in the integration
• Enables reusability

• Two paradigms:
• Software invocation
• Data transformations

Simulation

DA Software

Data
Analytics

ML Software

ML Training

#workflow steps defined as tasks
@data_transformation (input_data, transformation description)
@software (invocation description)
def data_analytics (input_data, result):

pass

#workflow body
simulation (input_cfg, sim_out)
data_analytics (sim_out, analysis_result)
ml_training (analysis_result, ml_model)

D
at

a
Tr

an
sf

or
m

at
io

n

D
at

a
Tr

an
sf

or
m

at
io

n

Computing Infrastructure

Software Invocation description

• Converts a Python function of a software invocation to
a PyCOMPSs task

• Takes information from the description in json

• Enables reuse in multiple workflows

Workflow Code

PyCOMPSs
Code

COMPSs runtime Software
Invocation

{
"type":"mpi",
"properties":{

"runner": "mpirun",
“processes”: “$SW_PROCS”
"binary": "mpi_sofware.x",
"params": "-d {{param}}",
“working_dir”: “{{working_dir}}”},

"prolog":{
"binary":"mkdir",
"params":"{{working_dir}}"},

"epilog":{
"binary":"tar",
"params":"zcvf {{out_tgz}}" {{working_dir}}},

"constraints":{
"computing_units": $SW_THREADS}

}

#workflow steps defined as tasks
@software(config_file="invocation.json")
def mpi_exec(work_dir, param, out_tgz):

pass

#workflow body
...
mpi_exec('my_folder', 'hello_world’)
...

mkdir working_dir
cd working_dir
export OMP_NUM_THREADS=$SW_THREADS
mpirun -n $SW_PROCS mpi_software.x -d param
tar zcvf out_tgz working_dir

User code
Automatically generated

Admin/user code

Software invocation description
Stored in software catalog

Data transformations

• A data transformation changes the data without requiring extra programming from
the developer

def load_blocks_rechunk(blocks, shape, block_size, new_block_size):
...
SnapshotMatrix = load_blocks_array (final_blocks, shape, block_size);
return SnapshotMatrix

@dt("blocks", load_blocks_rechunk, shape=expected_shape, block_size=simulation_block_size,
new_block_size=desired_block_size, is_workflow=True)

@software(config_file = SW_CATALOG + "/dislib/dislib.json")
def rSVD(blocks, desired_rank=30):

u,s = rsvd(blocks, desired_rank, A_row_chunk_size, A_column_chunk_size)
return u

Admin/user code

User code

Dislib: parallel machine learning

• dislib: Collection of machine learning algorithms developed on top of
PyCOMPSs
• Unified interface, inspired in scikit-learn (fit-predict)
• Based on a distributed data structure (ds-array)
• Unified data acquisition methods
• Parallelism transparent to the user –

PyCOMPSs parallelism hidden
• Open source, available to the community

• Provides multiple methods:
• data initialization
• Clustering
• Classification
• Model selection, ...

dislib.bsc.es

Agenda for presentations

• Linus Walter
• Marisol Monterrubio
• Rut Blanco
• Claudia Abril
• Natalia Zamora
• Alejandra Guerrero
• Marc Martínez Sepúlveda

Thank you

Tasks in container images

• Goal: enable tasks embedded in container images

• New @container decorator to be used together with the task annotation

• Also supports user-defined tasks

18

@container(engine="DOCKER", image="compss/compss")
@task(returns=1, num=IN, in_str=IN, fin=FILE_IN)
def task_python_return_str(num, in_str, fin):

print("Hello from Task Python RETURN")
print("- Arg 1: num -- " + str(num))
print("- Arg 1: str -- " + str(in_str))
print("- Arg 1: fin -- " + str(fin))
return "Hello"

@container(engine="DOCKER", image="ubuntu")
@binary(binary="ls")
@task()
def task_binary_empty():

pass

MPMD applications

• The @mpmd_mpi decorator can be used to define Multiple Program Multiple Data (MPMD) MPI tasks

• As a result of the @mpmd_mpi annotation, the following commands will be generated:
> cd working_dir_exe; mpirun -n $FESOM_PROCS fesom.x : \

-n $OIFS_PROCS oifs -v ecmwf -e awi3 : -n $RNFMA_PROCS rnfma

@mpmd_mpi(runner="mpirun", working_dir = {{working_dir_exe}},
programs=[{binary="fesom.x", processes = "$FESOM_PROCS" },

{binary="oifs", args="-v ecmwf -e awi3", processes = "$OIFS_PROCS" },
{binary="rnfma", processes = "$RNFMA_PROCS"}])

@task(log_file={Type:FILE_OUT, StdIOStream:STDOUT}, working_dir_exe=DIRECTORY_INOUT)
def esm_simulation(log_file, working_dir_exe):

pass

Afternoon discussion

• Topics
• Distributed training with dislib
• Parallel execution with tensorflow
• Cybershake implementation
• Usage of RF dislib model from scikitlearn
• Block size
• Time series with scikit-learn
• PyCOMPSs with containers
• CIC service and preliminary results
• PyCOMPSs with microservices
• Version control
• Sample workflow in PyCOMPSs

Distributed training with dislib

• Three different strategies for training:
• Epoch-synchronous training: each worker performs the training in parallel, and after each epoch, a synchronisation

point occurs. After this, new weights are computed and assigned to the neural network.
• Data shuffling, two options:

• random block exchange between workers combined with a local shuffle inside the worker
• total data shuffling (all data is exchanged between all blocks in all workers).

• This strategy should be equivalent to a sequential training if total shuffling is used.
• The drawback of this method is that performance can be reduced due to the global synchronisation point appearing after

each epoch. An alternative version has also been implemented, where the global weights are only updated after a group of
epochs (instead of after each epoch).

• Total asynchronous training: global weights are only updated after all epochs have been completed.
• Once a worker completes one epoch, it shuffles the data and proceeds with a new one.
• For the data shuffle the same two options described in the epoch-synchronous case are available.

• Partial asynchronous training: when a worker completes an epoch, partially updates the global weights with the
local results.

• Implemented by means of the “commutative” clause of PyCOMPSs which enables only one task at a time to perform this
update.

• This strategy performs an incremental update of the global weights that are available for the next iteration of those workers
that start a new training. This avoids per-epoch synchronisations (case 1) with the goal of reducing the total

Results with EDDL

• Data set
• Cifar-10
• 160-170 MB
• Split into 4 fragments

All trainings performed with 30 Epochs

Partial asynchronous with 50 Epochs,
others with 30 Epochs

Synchronizing every 4 epochs

Results with PyTorch

• Data set
• Imagenette Dataset
• 1.5 GB
• Dataset split in 24 tensors

Executed with 1 GPU per worker and node

Tensorflow

• https://www.tensorflow.org/guide/distributed_training

https://www.tensorflow.org/guide/distributed_training

Dislib RF model -> scikit learn

• Apparently not compatible

Dislib block size

• https://www.overleaf.com/project/63be8f7eb69dd8b7684e3c6e

https://www.overleaf.com/project/63be8f7eb69dd8b7684e3c6e

Distributed array (ds-array)

sa
m
pl
es

features

block

• 2-dimensional structure (i.e., matrix)
• Divided in blocks (NumPy arrays)

• Works as a regular Python object
• But not stored in local memory!

• Methods for instantiation and slicing with
the same syntax of numpy arrays:
• Internally parallelized with PyCOMPSs:
• Loading data (e.g. from a text file)
• Indexing (e.g., x[3], x[5:10]
• Operators (e.g., x.min(), x.transpose())

• ds-arrays can be iterated efficiently along
both axes

• Samples and labels can be represented by
independent distributed arrays

Times series with dislib

• Time series with dislib?

• Call scikit learn with PyCOMPSs per each station?

Tasks in container images

• Goal: enable tasks embedded in container images

• New @container decorator to be used together with the task annotation

• Also supports user-defined tasks

29

@container(engine="DOCKER", image="compss/compss")
@task(returns=1, num=IN, in_str=IN, fin=FILE_IN)
def task_python_return_str(num, in_str, fin):

print("Hello from Task Python RETURN")
print("- Arg 1: num -- " + str(num))
print("- Arg 1: str -- " + str(in_str))
print("- Arg 1: fin -- " + str(fin))
return "Hello"

@container(engine="DOCKER", image="ubuntu")
@binary(binary="ls")
@task()
def task_binary_empty():

pass

For i in range (0,3):
task_binary_empty():

31

• Simplicity for deployment
• Just pull or download the image

• Trade-Off performance/portability
• Architecture Optimizations

• Accessing Hardware from Containers
• MPI Fabric /GPUs
• Host-Container Version

Compatibility needed

Containers and HPC

Builder Machine (ISA x86_64)
receipt

deb/rpm installation

Container:
x86_64 (generic compilation)
no processor optimizations

Standard container image creation
Builder Machine (ISA x86)

Qemu
buildx –platform ppc64le

Receipt
eb GROMACS –optarch=”GCC:march=power9” \

spack install gromacs+mp+cuda –platform=power9

Container:
ppc64le with Power9 optimizations
with specific toolchain (gcc +mpi)

eFlows4HPC approach

• Methodology to allow the creation
containers for specific HPC system
• Leverage HPC and Multi-platform container

builders
• It is hard to do by hand but

let’s automate!

32 - ISC-HPC tutorial, May 2023 21/05/2023

Container Image Creation Service

Software CatalogueWorkflow Registry

HPC Ready Containers

Multi-platform
Build Tool

Build
recipe

Building
Environ.

HPC
Builders Container

Registry
Container

Image

Spack specs
Installation Description

spack.yml

Workflow step + target system

package.py

Container components
(spack Environment)

*Ejarque, J and Badia, R. "Automatizing the creation of specialized high-performance
computing containers." IJHPCA (2023), doi.org/10.1177/10943420231165729.

json request file

33

HPC-Ready Containers
Kratos Multiphysics (shared memory) FESOM2 (MPI)

Tsunami-HySEANord3

MN4

CTE-Power 9

core counts / task

core counts / task

MPI processes

MPI processes

#GPUs

Most of the execution
performed in the GPU

> 2X

~ 1.4X

*Ejarque, J and Badia, R. "Automatizing the creation of specialized high-performance computing containers." IJHPCA (2023), doi.org/10.1177/10943420231165729

34 - ISC-HPC tutorial, May 2023 21/05/2023

Pillar III: Urgent computing for natural hazards

Pillar III explores the modelling of natural
catastrophes:
• Earthquakes and their associated

tsunamis shortly after such an event
is recorded

• Use of AI to estimate intensity maps
• Use of DA and AI tools to enhance

event diagnostics
• Areas: Mediterranean basin, Mexico,

Iceland and Chile

Tsunami-HySEA GPU-based code

35 - ISC-HPC tutorial, May 2023 21/05/2023

Pillar III: UCIS4EQ workflow: http services as tasks
@http(request="POST", resource="SalvusRun", ...')
@task(returns=1)
def run_salvus(event_id, trial, input, resources):

"""
"""
pass

@http(request="POST", resource="cmt",...)
@task(returns=1)
def calculate_cmt(alert, event_id, domain, precmt):

"""
"""
pass

...

for alert in event['alerts’]:
cmts = calculate_cmt(alert, eid, domain, precmt)
for cmt in cmts.keys():

for slip in range(1, region['GPSetup']['trials']+1)
...
rupture = compute_graves_pitarka(eid, alert, ...)
inputs = build_input_parameters(eid, alert, ...)
salvus_inputs = build_salvus_parameters(eid, path, ...)
result = run_salvus(eid, path, ...)
all_results.append(run_salvus_post(eid, result, ...))

result = run_salvus_plots(eid, basename, domain, resources)

• Sample workflow
• https://docs.google.com/document/d/1QKolZoUi3OwkWppvK-wCxfwOZIjCxT1-/edit

https://docs.google.com/document/d/1QKolZoUi3OwkWppvK-wCxfwOZIjCxT1-/edit

