
Programming Distributed
Computing Platforms
with COMPSs
Pol Alvarez, Javier Alvarez, Ramon Amela, Rosa M. Badia,
Javier Conejero, Marc Dominguez, Jorge Ejarque, Daniele

Lezzi, Francesc Lordan, Cristian Ramon-Cortes, Sergio
Rodriguez

Workflows & Distributed Computing Group

29-30/01/2019 Barcelona

Outline

Day 1
• Roundtable (9:30 – 10:00): Presentation and background of participants

• Session 1 (10:00 – 10:30): Introduction to COMPSs
• Motivation
• Setup of tutorial environment

• Session 3 (10:30-13:00): PyCOMPSs
• Writing Python applications
• Coffee break (11:00 – 11:30)
• Python Hands-on using Jupyter notebooks

• Lunch break (13:00-14:30)

• Session 4 (14:30 -15:15): How to debug COMPSs applications

• Session 5 (15:15 -16:30): Python practical session (Bring your Own Code)

• SLIDES
• http://compss.bsc.es/releases/tutorials/tutorial-PATC_2019/

http://compss.bsc.es/releases/tutorials/tutorial-PATC_2019/

Outline

Day 2
• Session 6 (9:30-11:00): COMPSs & Java

• Writing Java applications

• Java Hands-on

• Coffee break (11:00 – 11:30)

• Session 7 (11:30-12:30): COMPSs Advanced Features
• Using binaries and MPI code

• COMPSs execution environment

• Integration with OmpSs

• Lunch break (13:30 – 14:30)

• Session 8 (14:30-15:30): Cluster Hands-on (MareNostrum)

• Session 9 (15:30 -16:30): Practical session (Bring your Own Code)

• COMPSs Installation & Final Notes

INTRODUCTION

Motivation

• New complex architectures constantly emerging
• With their own way of programming them

• Fine grain: e.g. APIs to run with GPUs, NVMs (Non-Volatile
Memories)

• Coarse grain: e.g. APIs to deploy in Clouds

• Difficult for programmers
• Higher learning curve / Time To Market (TTM)
• What about non computer scientists???

• Difficult to understand what is going on during execution
• Was it fast? Could it be even faster? Am I paying more than I

should? (Efficiency)

• Tune your application for each architecture (or cluster)
• E.g. partitioning data among nodes

Motivation

• Create tools that make user’s life easier
• Intermediate layer: let the difficult parts to those tools

• Act on behalf of the user

• Distributing the work through resources

• Dealing with architecture specifics

• Automatically improving performance

• Tools for visualization
• Monitoring
• Performance analysis

BSC vision on programming models

7

General purpose
Task based

Single address space

Intelligent runtime,
parallelization,

distribution,
interoperability

Program logic
independent of

computing platform
Applications

Power to the runtime

PM: High-level, clean, abstract interface

API

BSC vision on programming models

Average task Granularity:

100 us – 10 ms 10 ms - 1 day

Language bindings:

C, C++, FORTRAN Java, C/C++, Python

Dependences:

Memory address space Files, Objects

Intranode Distributed

StarSs
OmpSs COMPSs

@ SMP @ GPU @ FPGA @ Cluster @ Grids @ Clouds

Programming with COMPSs

• Sequential programming

• General purpose programming language + annotations/hints
• To identify tasks and directionality of data

• Task based: task is the unit of work

• Simple linear address space

• Builds a task graph at runtime that express potential concurrency
• Implicit workflow

• Exploitation of parallelism
• … and of distant parallelism

• Agnostic of computing
platform
• Enabled by the runtime

for clusters, clouds and
grids

Programming with COMPSs
• Support for other types of parallelism

• Threaded tasks (I.e., MKL kernels)

• MPI applications -> tasks that involve several nodes

• Integration with BSC OmpSs

• Available in MareNostrum, in the EGI Federated Cloud
and in Chameleon Cloud

COMPSs Runtime

Custom Loader

Grids
Clusters
Clouds

Language
bindings

Files,

objects

Tasks
Task

interception

Java

Python

C/C++ TDG

User code

+ task

annotations

David vs Goliath

Guidance
(LS)

Tiramisu
(AI)

Dislib
(ML , LA)

PyCOMPSs/COMPSs

API data access and control flow

Hecuba dataClay HDFS others

Hierarchical storage + computing resources

Mesos Slurm Clouds Docker

Spark SQL Streaming MLib

Apache Spark Core

API data access and control flow

Data Sources

Mesos Clouds

Graphx

YARN Docker

S3 HDFS

0

500

1000

1500

2000

2500

3000

3500

16 32 64 128 256 512 1024

T
im

e
 (

s
e
c

)

Worker Cores

COMPSs 2.0

Spark

0

500

1000

1500

2000

2500

16 32 64 128 256 512 1024

T
im

e
 (

s
e
c

)

Worker Cores

COMPSs 2.0

Spark

NMMB
Monarch (ES)

PyCOMPSs development environment

• Runtime monitor

• Paraver traces

• Jupyter-notebooks integration

13

Projects where COMPSs is used/developed

LANDSUPPORT

The WDC team

http://compss.bsc.es

SETUP OF THE TUTORIAL ENVIRONMENT

COMPSs docker

• Install Docker in your laptop
• https://www.docker.com/products/docker-desktop

• Clone the examples apps

• COMPSs image downloadable from docker hub

• Start the container

> docker pull compss/compss-tutorial:patc2019

> docker run -p 8888:8888 -p 8080:8080 -v path/to/tutorial_apps:/home/tutorial_apps \
-itd compss/compss-tutorial:patc2019 --name mycompss

Laptop directory where you have the examples

Image directory where you will find the examples

> git clone https://github.com/bsc-wdc/tutorial_apps.git

PyCOMPSs docker

• Start interactive session in the Docker container

> docker exec -it mycompss /bin/bash

Name of the container

PyCOMPSs docker

• Inside the image
• Start the COMPSs monitor:

• Start Jupyter

> /etc/init.d/compss-monitor start

> jupyter-notebook --no-browser --allow-root --ip=172.17.0.2 --NotebookApp.token=

PyCOMPSs docker

• From your browser
• Open Jupyter notebooks interface

• Open COMPSs monitor

http://localhost:8888/

http://localhost:8080/compss-monitor/index.zul

PyCOMPSs docker

• Ready to play with the notebooks

PYTHON SYNTAX

Why Python?

• Python is powerful... and fast;
plays well with others;
runs everywhere;
is friendly & easy to learn;
is Open. *

• Its design philosophy emphasizes code readability, and its
syntax allows programmers to express concepts in fewer lines
of code than would be possible in languages such as C

• Large community using it, including scientific and numeric

• Object-oriented programming and structured programming are
fully supported

• Large number of software modules available (>127,000 as of
January 2018) **

* From python.org ** From pypi.python.org

