
Programming Distributed
Computing Platforms
with COMPSs

Javier Alvarez, Rosa M. Badia, Javier Conejero, Jorge
Ejarque, Daniele Lezzi, Francesc Lordan, Nihad Mammadli,

Cristian Ramon-Cortes, Salvi Solà

Workflows & Distributed Computing Group

28-29/01/2020 Barcelona

Outline

Day 1
• Roundtable (9:30 – 10:00): Presentation and background of participants

• Session 1 (10:00 – 10:30): Introduction to COMPSs
• Motivation
• Setup of tutorial environment

• Session 2 (10:30-11:15): PyCOMPSs: Writing Python applications

• Coffee break (11:15 – 11:45)

• Session 3 (11:45 a 13.00) Python Hands-on using Jupyter notebooks

• Lunch break (13:00-14:30)

• Session 4 (14:30 - 15:00) Machine learning with dislib

• Session 5 (15:00 -16:30): Hands-on with dislib

• SLIDES
• http://compss.bsc.es/releases/tutorials/tutorial-PATC_2020/

http://compss.bsc.es/releases/tutorials/tutorial-PATC_2020/

Outline

Day 2
• Session 6 (9:30-11:00): Java & C++

• Writing Java applications

• Java Hands-on + debug

• C++ Syntax

• Coffee break (11:00 – 11:30)

• Session 7 (11:30-13:00): COMPSs Advanced Features
• Using binaries and MPI code, Fault Tolerance and Exception management, Numba

• COMPSs execution environment

• Lunch break (13:00 – 14:30)

• Session 8 (14:30-16:30): Cluster Hands-on (MareNostrum)

• COMPSs Installation & Final Notes

INTRODUCTION

Motivation

• New complex architectures constantly emerging
• With their own way of programming them

• Fine grain: e.g. Programming models and APIs to run with
GPUs, NVMs (Non-Volatile Memories)

• Coarse grain: e.g. APIs to deploy in Clouds

• Difficult for programmers
• Higher learning curve / Time To Market (TTM)
• What about non computer scientists???

• Difficult to understand what is going on during execution
• Was it fast? Could it be even faster? Am I paying more than I

should? (Efficiency)

• Tune your application for each architecture (or cluster)
• E.g. partitioning data among nodes

Motivation

• Create tools that make developers’ life easier
• Allow developers to focus on their problem

• Intermediate layer: let the difficult parts to those tools
• Act on behalf of the user

• Distribute the work through resources

• Deal with architecture specifics

• Automatically improve performance

• Tools for visualization
• Monitoring

• Performance analysis

BSC vision on programming models

7

General purpose
Task based

Single address space

Intelligent runtime,
parallelization,

distribution,
interoperability

Program logic
independent of

computing platform
Applications

Power to the runtime

PM: High-level, clean, abstract interface

API

BSC vision on programming models

Average task Granularity:

100 us – 10 ms 10 ms - 1 day

Language bindings:

C, C++, FORTRAN Java, C/C++, Python

Dependences:

Memory address space Files, Objects

Intranode Distributed

StarSs
OmpSs COMPSs

@ SMP @ GPU @ FPGA @ Cluster @ Grids @ Clouds

Programming with COMPSs

• Sequential programming

• General purpose programming language + annotations/hints
• To identify tasks and directionality of data

• Task based: task is the unit of work

• Simple linear address space

• Builds a task graph at runtime that express potential concurrency
• Implicit workflow

• Exploitation of parallelism
• … and of distant parallelism

• Agnostic of computing
platform
• Enabled by the runtime

for clusters, clouds and
grids

Programming with COMPSs
• Support for other types of parallelism

• Threaded tasks (I.e., MKL kernels)

• MPI applications -> tasks that involve several nodes

• Integration with BSC OmpSs

• Available in MareNostrum, in the EGI Federated Cloud
and in Chameleon Cloud

COMPSs runtime

11

• PyCOMPSs/COMPSs applications executed in distributed mode following the master-worker
paradigm

• Sequential execution starts in master node

• Tasks are offloaded to worker nodes

• All data scheduling decisions and data transfers are performed by the runtime

Task Dependecy Graph

Computing infrastructure

COMPSs

Runtime Resource Mgmt.

Task Execution

Scheduling
Task
Analysis

Data Mgmt.

Monitoring

Python
binding

Files,
objects

Tasks

Annotated
code

Custom Loader

Task
interception

Python

C/C++

Java

PyCOMPSs development environment

• Runtime monitor

• Paraver traces

• Jupyter-notebooks integration

12

Projects where COMPSs is used/developed

The WDC team

http://compss.bsc.es

SETUP OF THE TUTORIAL ENVIRONMENT

Setup

• From Linux or Mac:
• https://pypi.org/project/pycompss-player/#quickstart

1. Install docker

2. Install the PyCOMPS player for Docker:

sudo python3 -m pip install pycompss-player

3. Optional (to reduce wait times)

docker pull compss/compss-tutorial:2.6

https://pypi.org/project/pycompss-player/#quickstart

Setup

• For windows
• https://pypi.org/project/pycompss-player/#quickstart

1. Download and Install Oracle VirtualBox
https://www.virtualbox.org/

2. Download the tutorial VM.
http://compss.bsc.es/releases/vms/COMPSs-2.6-tutorial.ova

3. Open VirtualBox and import the ova.
Optional (but recommended to avoid large waiting times)

4. Start de VM, log in (password is compss2019) and run:
docker pull compss/compss-tutorial:2.6

Note: If the docker pull command fails be sure you have internet connection, the
Docker service is running (sudo service docker start) and your user is in the
docker group (sudo usermod -aG docker $USER)

https://pypi.org/project/pycompss-player/#quickstart
https://www.virtualbox.org/
http://compss.bsc.es/releases/vms/COMPSs-2.6-tutorial.ova

Start PyCOMPSs player

• Open a terminal in your linux/mac laptop or in the VM machine

• Get the tutorial examples:
git clone https://github.com/bsc-wdc/tutorial_apps.git

• Start PyCOMPss player with the tutorial’s image:
pycompss init -i compss/compss-tutorial:2.6

• Start COMPSs monitor
pycompss monitor start

• Open browser with URL: http://127.0.0.1:8080/compss-monitor

• Start Jupyter notebook with tutorial apps
cd tutorial_apps/python
pycompss jupyter ./notebooks

• Open browser with URL: http://127.0.0.1:8888/
or http://localhost:8888/

https://github.com/bsc-wdc/tutorial_apps.git
http://127.0.0.1:8080/compss-monitor
http://127.0.0.1:8888/
http://localhost:8888/

