

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Distributed machine learning with dislib

<u>Javier Álvarez</u>, Rosa M. Badia, Javier Conejero, Jorge Ejarque, Daniele Lezzi, Francesc Lordan, Nihad Mammadli, Cristian Ramon-Cortes, Salvi Solà

PATC 2020

Barcelona 28 Jan 2020

Built on top of PyCOMPSs

- Distributed array
 - similar to NumPy

- Distributed machine learning models
 - similar to scikit-learn

Distributed arrays

- 2-dimensional structure (i.e., matrix)
 - Divided in blocks (NumPy arrays)
- Work as a regular Python object
 - But not stored in local memory!
- Internally parallelized with PyCOMPSs:
 - Loading data (e.g., from a text file)
 - Indexing (e.g., x[3], x[5:10])
 - Operators (e.g., x.min(), x.transpose())

Machine learning basics

- Unsupervised:
 - Find unknown patterns in (unlabeled) data
 - Example: clustering

- Supervised:
 - Learn a decision function from labeled data
 - Example: classification

Clustering

Classification

97

Labeled data

Estimators

• Based on scikit-learn

• Estimator = anything that learns from data (labeled or unlabeled)

- Two main methods:
 - fit \rightarrow learns something from data (e.g., a decision function)
 - $predict \rightarrow provides new information based on a fitted model (e.g., labels data based on the computed decision function)$

Typical workflow

- 1. Read input data from file/s
- 2. Instantiate estimator with parameters
- 3. Fit estimator with training data
- 4. Make predictions on test data

x = load_txt_file("train.csv", (10, 780))
x_test = load_txt_file("test.csv", (10, 780))

kmeans = KMeans(n_clusters=10)

kmeans.fit(x)

kmeans.predict(x_test)

Supported algorithms

- Supervised:
 - Support vector machines
 - Random forests
 - Linear regression
 - ALS

- Unsupervised:
 - K-means
 - DBSCAN
 - K-nearest neighbors
 - Gaussian mixtures
 - PCA

dislib notebook

git clone https://github.com/bsc-wdc/dislib.git
cd dislib
pycompss init -i compss/compss-tutorial:2.6
pycompss jupyter notebooks

