Distributed machine learning with dislib

Javier Álvarez, Rosa M. Badia, Javier Conejero, Jorge Ejarque, Daniele Lezzi, Francesc Lordan, Nihad Mammadli, Cristian Ramon-Cortes, Salvi Solà
Barcelona
28 Jan 2020
PATC 2020

dislib distributed computing library

- Built on top of PyCOMPSs
- Distributed array
- similar to NumPy
- Distributed machine learning models
- similar to scikit-learn

Distributed arrays

- 2-dimensional structure (i.e., matrix)
- Divided in blocks (NumPy arrays)
- Work as a regular Python object
- But not stored in local memory!
- Internally parallelized with PyCOMPSs:
- Loading data (e.g., from a text file)
- Indexing (e.g., x[3], x[5:10])
- Operators (e.g., x.min(), x.transpose())

Machine learning basics

- Unsupervised:
- Find unknown patterns in (unlabeled) data
- Example: clustering
- Supervised:
- Learn a decision function from labeled data
- Example: classification

Clustering

Barcelona

Supercomputing
Center

Classification

Labeled data

Estimators

- Based on scikit-learn
- Estimator = anything that learns from data (labeled or unlabeled)
- Two main methods:
- fit \rightarrow learns something from data (e.g., a decision function)
- predict \rightarrow provides new information based on a fitted model (e.g., labels data based on the computed decision function)

Typical workflow

1. Read input data from file/s
2. Instantiate estimator with parameters
3. Fit estimator with training data
4. Make predictions on test data
```
x = load_txt_file("train.csv", (10, 780))
x_test = load_txt_file("test.csv", (10, 780))
```

kmeans $=$ KMeans (n_clusters=10)
kmeans.fit(x)
kmeans.predict(x_test)

Supported algorithms

- Supervised:
- Support vector machines
- Random forests
- Linear regression
- ALS
- Unsupervised:
- K-means
- DBSCAN
- K-nearest neighbors
- Gaussian mixtures
- PCA

dislib notebook

git clone https://github.com/bsc-wdc/dislib.git cd dislib
pycompss init -i compss/compss-tutorial:2.6 pycompss jupyter notebooks

