
Programming Distributed
Computing Platforms
with COMPSs

Rosa M. Badia, Javier Conejero, Jorge Ejarque, Daniele
Lezzi, Francesc Lordan, Nihad Mammadli, Salvi Solà

Workflows & Distributed Computing Group

26-27/01/2021 Barcelona

Outline

Day 1
• Roundtable (9:30 – 10:00): Presentation and background of participants

• Session 1 (10:00 – 10:30): Introduction to COMPSs
• Motivation
• Setup of tutorial environment

• Session 2 (10:30-11:15): PyCOMPSs: Writing Python applications

• Coffee break (11:15 – 11:45)

• Session 3 (11:45 a 13.00) Python Hands-on using Jupyter notebooks

• Lunch break (13:00-14:30)

• Session 4 (14:30 - 15:15) Machine learning with dislib

• Session 5 (15:15 -16:30): Hands-on with dislib

• SLIDES
• http://compss.bsc.es/releases/tutorials/tutorial-PATC_2021/

http://compss.bsc.es/releases/tutorials/tutorial-PATC_2021/

Outline

Day 2
• Session 6 (9:30-11:00): Java & C++

• Writing Java applications

• Java Hands-on + debug

• C++ Syntax

• Coffee break (11:00 – 11:30)

• Session 7 (11:30-13:00): COMPSs Advanced Features
• Using binaries and MPI code, Fault Tolerance and Exception management, Numba

• COMPSs execution environment

• Lunch break (13:00 – 14:30)

• Session 8 (14:30-16:30): Cluster Hands-on (MareNostrum)

• COMPSs Installation & Final Notes

INTRODUCTION

Motivation

• New complex architectures constantly emerging
• With their own way of programming them

• Fine grain: e.g. Programming models and APIs to run with
GPUs, NVMs (Non-Volatile Memories)

• Coarse grain: e.g. APIs to deploy in Clouds

• Difficult for programmers
• Higher learning curve / Time To Market (TTM)
• What about non computer scientists???

• Difficult to understand what is going on during execution
• Was it fast? Could it be even faster? Am I paying more than I

should? (Efficiency)

• Tune your application for each architecture (or cluster)
• E.g. partitioning data among nodes

Motivation
• Resources that appear and disappear

• How to dynamically add/remove nodes to the infrastructure

• Heterogeneity
• Different HW characteristics (performance, memory, etc)
• Different architectures -> compilation issues

• Network
• Different types of networks
• Instability

• Trust and Security

• Power constraints from the devices
in the edge

• Data & Storage

Sensors
Instruments
Actuators

HPC
Exascale computing
Cloud

Edge devices

Fog devices

Motivation

• Create tools that make developers’ life easier
• Allow developers to focus on their problem

• Intermediate layer: let the difficult parts to those tools
• Act on behalf of the user

• Distribute the work through resources

• Deal with architecture specifics

• Automatically improve performance

• Tools for visualization
• Monitoring

• Performance analysis

• Integration of computational workloads, with machine learning
and data analytics

BSC vision on programming models

8

General purpose
Task based

Single address space

Intelligent runtime,
parallelization,

distribution,
interoperability

Program logic
independent of

computing platform
Applications

Power to the runtime

PM: High-level, clean, abstract interface

API

BSC vision on programming models

Average task Granularity:

100 us – 10 ms 10 ms - 1 day

Language bindings:

C, C++, FORTRAN Java, C/C++, Python

Dependences:

Memory address space Files, Objects

Intranode Distributed

StarSs
OmpSs COMPSs

@ SMP @ GPU @ FPGA @ Cluster @ Grids @ Clouds

Programming with COMPSs

• Sequential programming

• General purpose programming language + annotations/hints
• To identify tasks and directionality of data

• Task based: task is the unit of work

• Simple linear address space

• Builds a task graph at runtime that express potential concurrency
• Implicit workflow

• Exploitation of parallelism
• … and of distant parallelism

• Agnostic of computing
platform
• Enabled by the runtime

for clusters, clouds and
grids

Programming with COMPSs

• Support for other types of parallelism
• Threaded tasks (I.e., MKL kernels)

• MPI applications -> tasks that involve several nodes

• Integration with BSC OmpSs

• Available in MareNostrum, in the EGI Federated Cloud and in
Chameleon Cloud

COMPSs runtime
• PyCOMPSs/COMPSs applications executed in distributed mode following the

master-worker paradigm

• Sequential execution starts in master node

• Tasks are offloaded to worker nodes

• All data scheduling decisions and data transfers are performed by the runtime

Task Dependecy Graph

Computing infrastructure

COMPSs

Runtime Resource Mgmt.

Task Execution

Scheduling
Task
Analysis

Data Mgmt.

Monitoring

Python
binding

Files,
objects

Tasks

Annotated
code

Custom Loader

Task
interception

Python

C/C++

Java

PyCOMPSs development environment

• Runtime monitor

• Paraver traces

• Jupyter-notebooks integration
Kratos

Kratos

Conclusions

Applications

Resource Management

Execution & Data management

DataClay/Hecuba
COMPSs

Runtime

Unicore

Edge Cloud Supercomputers

SLURM Singularity

HPC, DA & ML Compos ition

COMPSs Programming Model

Data Analytics & Machine learning

dis lib

QBeast

Docker

• COMPSs provides a workflow environment
that enables the integration of HPC
simulation and modelling with big data
analytics and machine learning

• Support for dynamic workflows that can
change their behaviour during the
execution

• Support for dynamic resource
management depending on the actual
workload needs

• Support for data-streaming enabling the
combination of task-flow and data-flow in
the same workflow

• Support for persistent storage beyond
traditional file systems.

Problem
definition

Dynamic
Workflow
Definition

Efficient
Distributed
Execution

Projects where COMPSs is used/developed

The WDC team

http://compss.bsc.es

SETUP OF THE TUTORIAL ENVIRONMENT

Setup

Linux or Mac:

1. Install docker:
• Linux: "apt-get install docker" (depends on your distribution)
• Mac-os: direct download from docker.com. You can find instructions here:

https://docs.docker.com/docker-for-mac/install/

2. Get COMPSs docker image:
• docker pull compss/compss-tutorial:2.8

3. Install pycompss-player:
• Linux: sudo python3 –m pip install pycompss-player
• Mac-os: pip install pycompss-player

For Java Hands-on

4. Install maven
• https://maven.apache.org/install.html

5. A Java IDE is recommended for editing Java code (such as Eclipse)
• https://www.eclipse.org/downloads/

Setup

• For windows
• https://pypi.org/project/pycompss-player/#quickstart

1. Download and Install Oracle VirtualBox
https://www.virtualbox.org/

2. Download the tutorial VM.
http://compss.bsc.es/releases/vms/COMPSs-2.8.ova

3. Start the VM image
• Start Virtualbox
• Import the COMPSs VM image
• Start COMPSs VM image

• user: compss
• password: compss2021

4. Get COMPSs docker image:
• docker pull compss/compss-tutorial:2.8

Note: If the docker pull command fails be sure you have internet connection,
the Docker service is running (sudo service docker start) and your user is in the
docker group (sudo usermod -aG docker $USER)

https://pypi.org/project/pycompss-player/#quickstart
https://www.virtualbox.org/
http://compss.bsc.es/releases/vms/COMPSs-2.8.ova

Start PyCOMPSs player

• Open a terminal in your linux/mac laptop or in the VM machine

• Get the tutorial examples:
git clone https://github.com/bsc-wdc/tutorial_apps.git

• Start PyCOMPss player with the tutorial’s image:
pycompss init -i compss/compss-tutorial:2.8

• Start COMPSs monitor
pycompss monitor start

• Open browser with URL: http://127.0.0.1:8080/compss-monitor

• Start Jupyter notebook with tutorial apps
cd tutorial_apps/python
pycompss jupyter ./notebooks

• Open browser with URL: http://127.0.0.1:8888/
or http://localhost:8888/

https://github.com/bsc-wdc/tutorial_apps.git
http://127.0.0.1:8080/compss-monitor
http://127.0.0.1:8888/
http://localhost:8888/

