

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Programming Distributed Computing Platforms with COMPSs

Rosa M. Badia, Javier Conejero, Jorge Ejarque, Daniele Lezzi, Francesc Lordan, Nihad Mammadli, Salvi Solà

Workflows & Distributed Computing Group

26-27/01/2021

Barcelona

Outline

Day 1

- Roundtable (9:30 10:00): Presentation and background of participants
- Session 1 (10:00 10:30): Introduction to COMPSs
 - Motivation
 - Setup of tutorial environment
- Session 2 (10:30-11:15): PyCOMPSs: Writing Python applications
- Coffee break (11:15 11:45)
- Session 3 (11:45 a 13.00) Python Hands-on using Jupyter notebooks
- Lunch break (13:00-14:30)
- Session 4 (14:30 15:15) Machine learning with dislib
- Session 5 (15:15 -16:30): Hands-on with dislib
- SLIDES
 - <u>http://compss.bsc.es/releases/tutorials/tutorial-PATC_2021/</u>

Outline

Day 2

- Session 6 (9:30-11:00): Java & C++
 - Writing Java applications
 - Java Hands-on + debug
 - C++ Syntax
- Coffee break (11:00 11:30)
- Session 7 (11:30-13:00): COMPSs Advanced Features
 - Using binaries and MPI code, Fault Tolerance and Exception management, Numba
 - COMPSs execution environment
- Lunch break (13:00 14:30)
- Session 8 (14:30-16:30): Cluster Hands-on (MareNostrum)
- COMPSs Installation & Final Notes

Barcelona Supercomputing Center Centro Nacional de Supercomputación

INTRODUCTION

Motivation

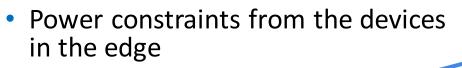
- New complex architectures constantly emerging
 - With their own way of programming them
 - Fine grain: e.g. Programming models and APIs to run with GPUs, NVMs (Non-Volatile Memories)
 - Coarse grain: e.g. APIs to deploy in Clouds
 - **Difficult** for programmers
 - Higher learning curve / Time To Market (TTM)
 - What about non computer scientists???
 - Difficult to understand what is going on during execution
 - Was it fast? Could it be even faster? Am I paying more than I should? (Efficiency)
 - Tune your application for each architecture (or cluster)
 - E.g. partitioning data among nodes

Motivation

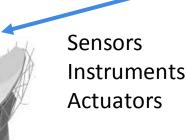
Al everywhere

NEW PI3 B

Edge devices


Fog devices

HPC

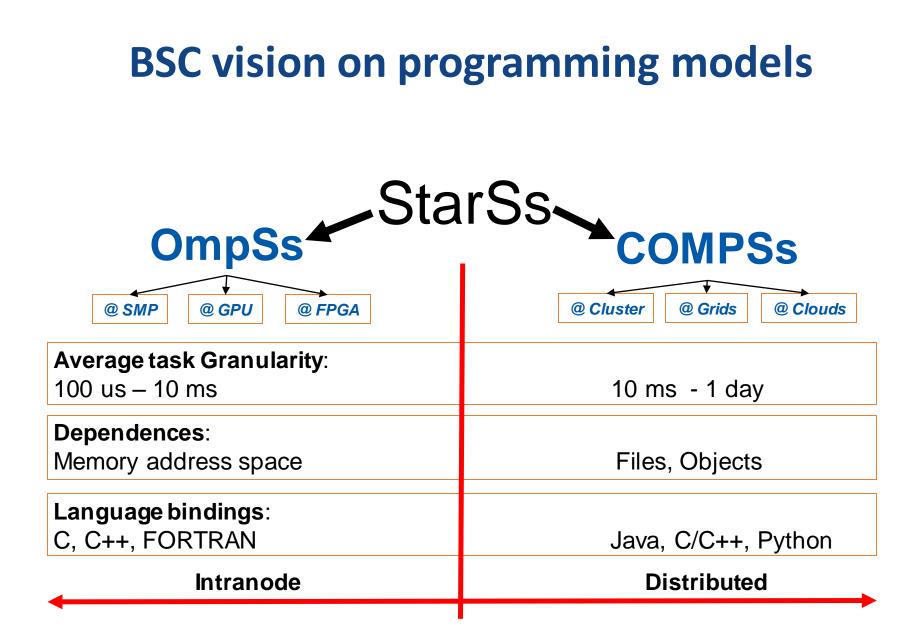

Cloud

Exascale computin

- Resources that appear and disappear
 - How to dynamically add/remove nodes to the infrastructure
- Heterogeneity
 - Different HW characteristics (performance, memory, etc)
 - Different architectures -> compilation issues
- Network
 - Different types of networks
 - Instability
- Trust and Security

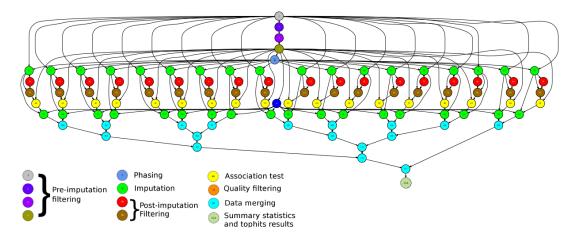
Data & Storage

Motivation

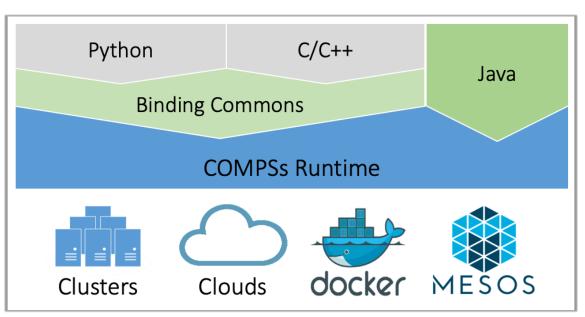

- Create tools that make developers' life easier
 - Allow developers to focus on their problem
 - Intermediate layer: let the difficult parts to those tools
 - Act on behalf of the user
 - Distribute the work through resources
 - Deal with architecture specifics
 - Automatically improve performance
 - Tools for visualization
 - Monitoring
 - Performance analysis
 - Integration of computational workloads, with machine learning and data analytics

BSC vision on programming models

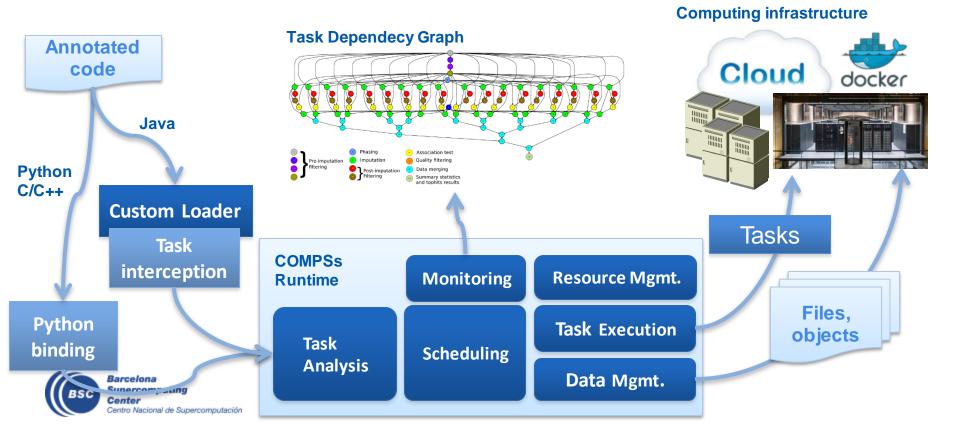
Program logic independent of computing platform **Applications** PM: High-level, clean, abstract interface General purpose Task based Single address space Power to the runtime Intelligent runtime, parallelization, API distribution, interoperability Cloud Barcelona



Programming with COMPSs


- Sequential programming
- General purpose programming language + annotations/hints
 - To identify tasks and directionality of data
- Task based: task is the unit of work
- Simple linear address space
- Builds a task graph at runtime that express potential concurrency
 - Implicit workflow
- Exploitation of parallelism
 - ... and of distant parallelism
- Agnostic of computing platform
 - Enabled by the runtime for clusters, clouds and grids

Programming with COMPSs


- Support for other types of parallelism
 - Threaded tasks (I.e., MKL kernels)
 - MPI applications -> tasks that involve several nodes
 - Integration with BSC OmpSs
- Available in MareNostrum, in the EGI Federated Cloud and in Chameleon Cloud

COMPSs runtime

- PyCOMPSs/COMPSs applications executed in distributed mode following the master-worker paradigm
- Sequential execution starts in master node
- Tasks are offloaded to worker nodes
- All data scheduling decisions and data transfers are performed by the runtime

PyCOMPSs development environment

- Runtime monitor
- Paraver traces

.

HEAD 1.1.1

HREAD 1.2.2

THEAD 1.2.6 THEAD 1.3.1 THEAD 1.3.5

THREAD 1.4.4

HREAD 1.4.8

NREAD 1.5.3

NEGAD 1.6.6

NREAD 1.7.1

HEAD 1.7.9

HEAD 1.8.4

HREAD 1.9. HREAD 1.9.

createBlock

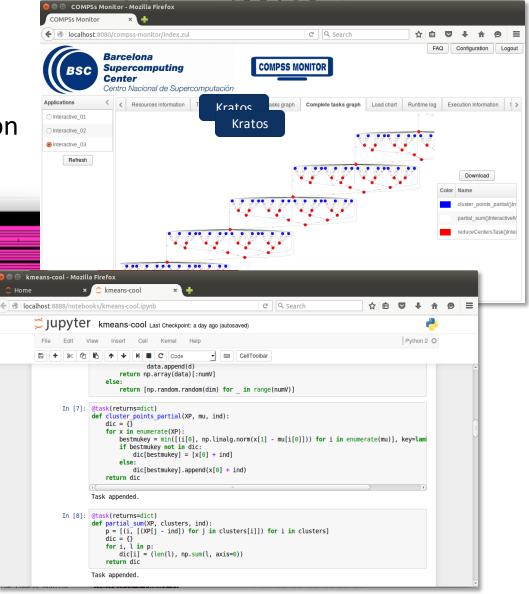
solve_triangular

Barcelona

Supercomputing Center

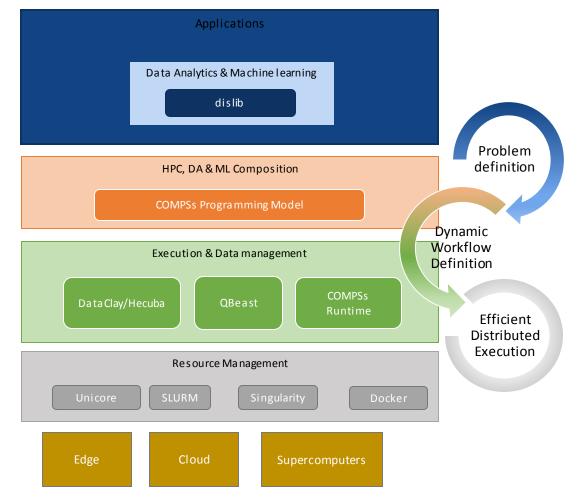
Centro Nacional de Supercomputación

potrf


gemm

Jupyter-notebooks integration

What / Where


Timing

Compss Tasks @ cholesky.py_compss_trace_1504256615.prv

Conclusions

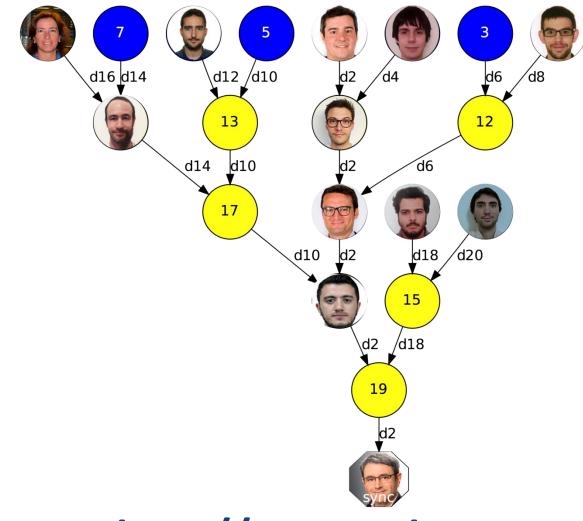
- COMPSs provides a workflow environment that enables the integration of HPC simulation and modelling with big data analytics and machine learning
- Support for dynamic workflows that can change their behaviour during the execution
- Support for dynamic resource management depending on the actual workload needs
- Support for data-streaming enabling the combination of task-flow and data-flow in the same workflow
- Support for persistent storage beyond traditional file systems.

Projects where COMPSs is used/developed

ExaQUte

Exascale Quantification of Uncertainties for Technology and Science Simulation

HPC/Exascale Centre of Excellence in Personalised Medicine



Barcelona Supercomputing Center Centro Nacional de Supercomputación

The WDC team

Supercomputing Center Centro Nacional de Supercomputación

Barcelona Supercomputing Center Centro Nacional de Supercomputación

SETUP OF THE TUTORIAL ENVIRONMENT

Setup

Linux or Mac:

- 1. Install docker:
 - Linux: "apt-get install docker" (depends on your distribution)
 - Mac-os: direct download from docker.com. You can find instructions here: https://docs.docker.com/docker-for-mac/install/
- 2. Get COMPSs docker image:
 - docker pull compss/compss-tutorial:2.8
- 3. Install pycompss-player:
 - Linux: sudo python3 –m pip install pycompss-player
 - Mac-os: pip install pycompss-player
- For Java Hands-on
- 4. Install maven
 - https://maven.apache.org/install.html
- 5. A Java IDE is recommended for editing Java code (such as Eclipse)
 - https://www.eclipse.org/downloads/

Setup

- For windows
 - <u>https://pypi.org/project/pycompss-player/#quickstart</u>
 - 1. Download and Install Oracle VirtualBox https://www.virtualbox.org/
 - 2. Download the tutorial VM. http://compss.bsc.es/releases/vms/COMPSs-2.8.ova
 - 3. Start the VM image
 - Start Virtualbox
 - Import the COMPSs VM image
 - Start COMPSs VM image
 - user: compss
 - password:compss2021
 - 4. Get COMPSs docker image:
 - docker pull compss/compss-tutorial:2.8
 Note: If the docker pull command fails be sure you have internet connection, the Docker service is running (sudo service docker start) and your user is in the docker group (sudo usermod -aG docker \$USER)

Start PyCOMPSs player

- Open a terminal in your linux/mac laptop or in the VM machine
- Get the tutorial examples: git clone <u>https://github.com/bsc-wdc/tutorial apps.git</u>
- Start PyCOMPss player with the tutorial's image: pycompss init -i compss/compss-tutorial:2.8
- Start COMPSs monitor
 pycompss monitor start
- Open browser with URL: http://127.0.0.1:8080/compss-monitor
- Start Jupyter notebook with tutorial apps cd tutorial_apps/python pycompss jupyter ./notebooks
- Open browser with URL: <u>http://127.0.0.1:8888/</u> or <u>http://localhost:8888/</u>

