
Programming Distributed
Computing Platforms
with COMPSs

Rosa M. Badia, Javier Conejero, Cristian Tatu

Workflows & Distributed Computing Group

06/02/2024 Winter School, Barcelona

2

Outline

Agenda
• Presentation of the tutorial presenters
• Introduction to COMPSs (20 min)
• PyCOMPSs: Writing Python applications (1hour)
• Break (15 min)
• Hands-on MN (1 hour)
• PyCOMPSs installation (15 min)

• SLIDES
• http://compss.bsc.es/releases/tutorials/tutorial-WINTER_SCHOOL_2024/

http://compss.bsc.es/releases/tutorials/tutorial-WINTER_SCHOOL_2024/

INTRODUCTION

4

Motivation

• New complex architectures constantly emerging
• With their own way of programming them

• Fine grain: e.g. Programming models and APIs to run with
GPUs, NVMs (Non-Volatile Memories)

• Coarse grain: e.g. APIs to deploy in Clouds
• Difficult for programmers

• Higher learning curve / Time To Market (TTM)
• What about non computer scientists???

• Difficult to understand what is going on during execution
• Was it fast? Could it be even faster? Am I paying more than I

should? (Efficiency)
• Tune your application for each architecture (or cluster)

• E.g. partitioning data among nodes

5

Motivation
• Resources that appear and disappear

• How to dynamically add/remove nodes to the infrastructure
• Heterogeneity

• Different HW characteristics (performance, memory, etc)
• Different architectures -> compilation issues

• Network
• Different types of networks
• Instability

• Trust and Security
• Power constraints from the devices

in the edge
• Data & Storage

Sensors
Instruments
Actuators

HPC
Exascale computing
Cloud

Edge devices

Fog devices

AI everywhere

6

Motivation

• Create tools that make developers’ life easier
• Allow developers to focus on their problem
• Intermediate layer: let the difficult parts to those tools

• Act on behalf of the user
• Distribute the work through resources
• Deal with architecture specifics
• Automatically improve performance

• Tools for visualization
• Monitoring
• Performance analysis

• Integration of computational workloads, with machine learning
and data analytics

7

BSC vision on programming models

General purpose
Task based

Single address space

Intelligent runtime,
parallelization,

distribution,
interoperability

Program logic
independent of

computing platform
Applications

Power to the runtime

PM: High-level, clean, abstract interface

API

8

BSC vision on programming models

Average task Granularity:
100 us – 10 ms 10 ms - 1 day

Language bindings:
C, C++, FORTRAN Java, C/C++, Python

Dependences:
Memory address space Files, Objects

Intranode Distributed

StarSs
OmpSs COMPSs

@ SMP @ GPU @ FPGA @ Cluster @ Grids @ Clouds

9

Main element: Workflows in PyCOMPSs

• Sequential programming, parallel execution
• General purpose programming language + annotations/hints

• To identify tasks and directionality of data
• Builds a task graph at runtime that express potential concurrency
• Tasks can be sequential and parallel (threaded or MPI)
• Offers to applications the illusion of a shared memory in a

distributed system
• The application can address larger data

than storage space: support for Big Data apps
• Agnostic of computing

platform
• Enabled by the runtime

for clusters, clouds and
container managed clusters

9

@task(c=INOUT)
def multiply(a, b, c):

c += a*b

10

PyCOMPSs features and runtime
• Support for tasks’ constraints – support for heterogeneous infrastructure
• Support for tasks’ faults and tasks’ exceptions

• Enlarges the dynamicity of the type of workflows that we support

• Streamed data
• ... and many others

• Runtime deployed as a distributed master-worker
• All data scheduling

decisions and data
transfers are
performed by the
runtime

• Support for elasticity
• Available in MareNostrum and

other supercomputers in Europe,
in the EGI Federated Cloud and
in Chameleon Cloud

11

PyCOMPSs development environment

• Runtime monitor
• Paraver traces
• Jupyter-notebooks integration

12

Conclusions
Applications

Resource Management

Execution & Data management

DataClay/Hecuba COMPSs
Runtime

Unicore

Edge Cloud Supercomputers

SLURM Singularity

HPC, DA & ML Composition

COMPSs Programming Model

Data Analytics & Machine learning

dislib

QBeast

Docker

• COMPSs provides a workflow
environment that enables the
integration of HPC simulation and
modelling with big data analytics
and machine learning

• Support for dynamic workflows
that can change their behaviour
during the execution

• Support for dynamic resource
management depending on the
actual workload needs

• Support for data-streaming
enabling the combination of task-
flow and data-flow in the same
workflow

• Support for persistent storage
beyond traditional file systems.

Problem
definition

Dynamic
Workflow
Definition

Efficient
Distributed
Execution

13

Projects where COMPSs is used/developed

CAELESTIS

HP2C-DT

COLMENA

CyclOps

PERTE chip

14

The WDC team

http://compss.bsc.es

