
COMP Superscalar

User Manual
Application execution guide

Version: 2.2

October 20, 2017

This manual provides information about how to execute COMPSs applications, how
to retrieve the results and the logs of an execution and it provides an overview of the
COMPSs tools usage. It is highly recommended to test the examples described in this
manual with a working COMPSs installation. For this purpose we provide a COMPSs
Virtual Machine available at http://compss.bsc.es/ .

For information about the installation process please refer to the COMPSs Installation
Guide available at http://compss.bsc.es/ .

For further information about the application development please refer to the COMPSs
User Manual: Application development guide available at http://compss.bsc.es/ .

For an extensive list of COMPSs application examples (codes, execution commands,
results, logs, etc.) please refer to the COMPSs Sample Applications guide at http:

//compss.bsc.es/ .

i

http://compss.bsc.es/
http://compss.bsc.es/
http://compss.bsc.es/
http://compss.bsc.es/
http://compss.bsc.es/

Contents

1 COMP Superscalar (COMPSs) 1

2 Executing COMPSs applications 2
2.1 Prerequisites . 2
2.2 Runcompss command . 2
2.3 Running a COMPSs application . 4

2.3.1 Running Java applications . 4
2.3.2 Running Python applications . 5
2.3.3 Running C/C++ applications . 5

2.4 Additional configurations . 6

3 Results and logs 7
3.1 Results . 7
3.2 Logs . 8

4 COMPSs Tools 11
4.1 Application graph . 11
4.2 COMPSs Monitor . 11

4.2.1 Service configuration . 12
4.2.2 Usage . 12
4.2.3 Graphical Interface features . 14

4.3 Application tracing . 15
4.3.1 Trace Command . 16
4.3.2 Trace visualization . 17

4.4 COMPSs IDE . 18

5 Special Execution Platforms 19
5.1 Docker . 19

5.1.1 Introduction . 19
5.1.2 Requirements . 19
5.1.3 Execution . 19
5.1.4 Execution step 1: Creation of the application image 20
5.1.5 Execution step 2: Run the application 20
5.1.6 Execution with TLS . 22
5.1.7 Execution results . 23
5.1.8 Execution examples . 24

5.2 Chameleon . 26
5.2.1 Introduction . 26
5.2.2 Execution . 26

5.3 SuperComputers . 27

ii

6 Common Issues 28
6.1 How to debug . 28
6.2 Tasks are not executed . 28
6.3 Jobs fail . 28
6.4 Compilation error: @Method not found . 29
6.5 Jobs failed on method reflection . 30
6.6 Jobs failed on reflect target invocation null pointer 31
6.7 Tracing merge failed: too many open files 31

iii

List of Figures

1 Output generated by the execution of the Simple Java application with
COMPSs . 7

2 Sequential execution of the Hello java application 7
3 COMPSs execution of the Hello java application 8
4 Structure of the logs folder for the Simple java application in off mode . . 8
5 Structure of the logs folder for the Simple java application in info mode . . 9
6 runtime.log generated by the execution of the Simple java application . . . 9
7 resources.log generated by the execution of the Simple java application . . 10
8 Structure of the logs folder for the Simple java application in debug mode 10
9 The dependency graph of the SparseLU application 11
10 COMPSs Monitor start command . 12
11 COMPSs monitoring interface . 13
12 Execution of the Simple Java application with the monitoring flag enabled 14
13 Logs generated by the Simple java application with the monitoring flag

enabled . 14
14 Result and log folders of a Matmul execution with COMPSs and Docker . 23
15 Structure of COMPSs queue scripts. In Blue user scripts, in Green queue

scripts and in Orange system dependant scripts 27

iv

1 COMP Superscalar (COMPSs)

COMP Superscalar (COMPSs) is a programming model which aims to ease the develop-
ment of applications for distributed infrastructures, such as Clusters, Grids and Clouds.
COMP Superscalar also features a runtime system that exploits the inherent parallelism
of applications at execution time.

For the sake of programming productivity, the COMPSs model has four key charac-
teristics:

• Sequential programming: COMPSs programmers do not need to deal with the
typical duties of parallelization and distribution, such as thread creation and syn-
chronization, data distribution, messaging or fault tolerance. Instead, the model
is based on sequential programming, which makes it appealing to users that either
lack parallel programming expertise or are looking for better programmability. A
task is a method or a service called from the application code that is intended to
be spawned asynchronously and possibly run in parallel with other tasks on a set of
resources, instead of locally and sequentially.

• Infrastructure unaware: COMPSs offers a model that abstracts the application
from the underlying distributed infrastructure. Hence, COMPSs programs do not
include any detail that could tie them to a particular platform, like deployment or
resource management. This makes applications portable between infrastructures
with diverse characteristics.

• Standard programming languages: COMPSs is based on the popular program-
ming language Java, but also offers language bindings for Python and C/C++ ap-
plications. This facilitates the learning of the model, since programmers can reuse
most of their previous knowledge.

• No APIs: In the case of COMPSs applications in Java, the model does not require
to use any special API call, pragma or construct in the application; everything
is pure standard Java syntax and libraries. With regard the Python and C/C++
bindings, a small set of API calls should be used on the COMPSs applications.

1

2 Executing COMPSs applications

2.1 Prerequisites

Prerequisites vary depending on the application’s code language: for Java applications
the users need to have a jar archive containing all the application classes, for Python
applications there are no requirements and for C/C++ applications the code must have
been previously compiled by using the buildapp command.

For further information about how to develop COMPSs applications please refer to the
COMPSs User Manual: Application development guide available at the http://compss.

bsc.es/ webpage.

2.2 Runcompss command

COMPSs applications are executed using the runcompss command:

compss@bsc:~$ runcompss [options] application_name [application_arguments]

The application name must be the fully qualified name of the application in Java, the
path to the .py file containing the main program in Python and the path to the master
binary in C/C++.

The application arguments are the ones passed as command line to main application.
This parameter can be empty.

The runcompss command allows the users to customize a COMPSs execution by
specifying different options. For clarity purposes, parameters are grouped in Runtime
configuration, Tools enablers and Advanced options.

compss@bsc:~$ runcompss -h

Usage: runcompss [options] application_name application_arguments

* Options:

General:

--help, -h Print this help message

--opts Show available options

--version, -v Print COMPSs version

Tools enablers:

--graph=<bool>, --graph, -g Generation of the complete graph (true/false)

When no value is provided it is set to true

Default: false

--tracing=<level>, --tracing, -t Set generation of traces and/or tracing level

([true | basic] | advanced | false)

True and basic levels will produce the same traces.

When no value is provided it is set to true

Default: false

--monitoring=<int>, --monitoring, -m Period between monitoring samples (milliseconds)

When no value is provided it is set to 2000

Default: 0

--external_debugger=<int>,

--external_debugger Enables external debugger connection on the specified

port (or 9999 if empty)

Default: false

2

http://compss.bsc.es/
http://compss.bsc.es/

Runtime configuration options:

--task_execution=<compss|storage> Task execution under COMPSs or Storage.

Default: compss

--storage_conf=<path> Path to the storage configuration file

Default: None

--project=<path> Path to the project XML file

Default: /opt/COMPSs/Runtime/configuration/xml/

projects/default_project.xml

--resources=<path> Path to the resources XML file

Default: /opt/COMPSs/Runtime/configuration/xml/

resources/default_resources.xml

--lang=<name> Language of the application (java/c/python)

Default: java

--summary Displays a task execution summary at the end of

the application execution

Default: false

--log_level=<level>, --debug, -d Set the debug level: off | info | debug

Default: off

Advanced options:

--extrae_config_file=<path> Sets a custom extrae config file. Must be in a shared disk

between all COMPSs workers.

Default: null

--comm=<path> Class that implements the adaptor for communications

Supported adaptors: es.bsc.compss.nio.master.NIOAdaptor

| es.bsc.compss.gat.master.GATAdaptor

Default: es.bsc.compss.nio.master.NIOAdaptor

--conn=<path> Path of the connector jar/s that should be loaded.

You can use multiple by splitting with ’:’

Supported connectors: compss-{CONN}-connector.jar

(where {CONN} can be: "jclouds", "amazon", "docker",

"one", "rocci", "vmm", etc.)

--scheduler=<path> Class that implements the Scheduler for COMPSs

Supported schedulers:

es.bsc.compss.components.impl.TaskScheduler

| es.bsc.compss.scheduler.readyscheduler.ReadyScheduler

Default:

es.bsc.compss.scheduler.readyscheduler.ReadyScheduler

--library_path=<path> Non-standard directories to search for libraries (e.g. Java

JVM library, Python library, C binding library)

Default: Working Directory

--classpath=<path> Path for the application classes / modules

Default: Working Directory

--appdir=<path> Path for the application class folder.

Default: /home/cramonco

--base_log_dir=<path> Base directory to store COMPSs log files (a .COMPSs/ folder

will be created inside this location)

Default: User home

--specific_log_dir=<path> Use a specific directory to store COMPSs log files (the

folder MUST exist and no sandbox is created)

Warning: Overwrites --base_log_dir option

Default: Disabled

--uuid=<int> Preset an application UUID

Default: Automatic random generation

--master_name=<string> Hostname of the node to run the COMPSs master

Default:

--master_port=<int> Port to run the COMPSs master communications.

Only for NIO adaptor

Default: [43000,44000]

--jvm_master_opts="<string>" Extra options for the COMPSs Master JVM. Each option separed

by "," and without blank spaces (Notice the quotes)

Default:

--jvm_workers_opts="<string>" Extra options for the COMPSs Workers JVMs. Each option separed

by "," and without blank spaces (Notice the quotes)

Default: -Xms1024m,-Xmx1024m,-Xmn400m

--task_count=<int> Only for C/Python Bindings. Maximum number of different

functions/methods, invoked from the application, that

have been selected as tasks

Default: 50

3

--pythonpath=<path> Additional folders or paths to add to the PYTHONPATH

Default: /home/cramonco

--PyObject_serialize=<bool> Only for Python Binding. Enable the object serialization

to string when possible (true/false).

Default: false

* Application name:

For Java applications: Fully qualified name of the application

For C applications: Path to the master binary

For Python applications: Path to the .py file containing the main program

* Application arguments:

Command line arguments to pass to the application. Can be empty.

2.3 Running a COMPSs application

Before running COMPSs applications the application files must be in the CLASSPATH.
Thus, when launching a COMPSs application, users can manually pre-set the CLASS-
PATH environment variable or can add the --classpath option to the runcompss com-
mand.

The next three sections provide specific information for launching COMPSs applica-
tions developed in different code languages (Java, Python and C/C++). For clarity pur-
poses, we will use the Simple application (developed in Java, Python and C++) available
in the COMPSs Virtual Machine or at https://compss.bsc.es/projects/bar webpage.
This application takes an integer as input parameter and increases it by one unit using a
task. For further details about the codes please refer to the Sample Applications document
available at http://compss.bsc.es .

2.3.1 Running Java applications

A Java COMPSs application can be launched through the following command:

compss@bsc:~$ cd tutorial_apps/java/simple/jar/

compss@bsc:~/tutorial_apps/java/simple/jar$ runcompss simple.Simple <initial_number>

compss@bsc:~/tutorial_apps/java/simple/jar$ runcompss simple.Simple 1

[INFO] Using default execution type: compss

[INFO] Using default location for project file: /opt/COMPSs/Runtime/configuration/xml/projects/

default_project.xml

[INFO] Using default location for resources file: /opt/COMPSs/Runtime/configuration/xml/resources/

default_resources.xml

[INFO] Using default language: java

----------------- Executing simple.Simple --------------------------

WARNING: COMPSs Properties file is null. Setting default values

[(1066) API] - Starting COMPSs Runtime v<version>

Initial counter value is 1

Final counter value is 2

[(4740) API] - Execution Finished

--

4

https://compss.bsc.es/projects/bar
http://compss.bsc.es

In this first execution we use the default value of the --classpath option to auto-
matically add the jar file to the classpath (by executing runcompss in the directory which
contains the jar file). However, we can explicitly do this by exporting the CLASSPATH
variable or by providing the --classpath value. Next, we provide two more ways to
perform the same execution:

compss@bsc:~$ export CLASSPATH=$CLASSPATH:/home/compss/tutorial_apps/java/simple/jar/simple.jar

compss@bsc:~$ runcompss simple.Simple <initial_number>

compss@bsc:~$ runcompss --classpath=/home/compss/tutorial_apps/java/simple/jar/simple.jar

simple.Simple <initial_number>

2.3.2 Running Python applications

To launch a COMPSs Python application users have to provide the --lang=python option
to the runcompss command. If the extension of the main file is a regular Python extension
(.py or .pyc) the runcompss command can also infer the application language without
specifying the lang flag.

compss@bsc:~$ cd tutorial_apps/python/simple/

compss@bsc:~/tutorial_apps/python/simple$ runcompss --lang=python ./simple.py <initial_number>

compss@bsc:~/tutorial_apps/python/simple$ runcompss simple.py 1

[INFO] Using default execution type: compss

[INFO] Using default location for project file: /opt/COMPSs/Runtime/configuration/xml/projects/

default_project.xml

[INFO] Using default location for resources file: /opt/COMPSs/Runtime/configuration/xml/resources/

default_resources.xml

[INFO] Inferred PYTHON language

----------------- Executing simple.py --------------------------

WARNING: COMPSs Properties file is null. Setting default values

[(616) API] - Starting COMPSs Runtime v<version>

Initial counter value is 1

Final counter value is 2

[(4297) API] - Execution Finished

--

2.3.3 Running C/C++ applications

To launch a COMPSs C/C++ application users have to compile the C/C++ application by
means of the buildapp command. For further information please refer to the COMPSs
User Manual: Application development guide document available at http://compss.bsc.
es . Once complied, the --lang=c option must be provided to the runcompss command.

5

http://compss.bsc.es
http://compss.bsc.es

If the main file is a C / C++ binary the runcompss command can also infer the application
language without specifying the lang flag.

compss@bsc:~$ cd tutorial_apps/c/simple/

compss@bsc:~/tutorial_apps/c/simple$ runcompss --lang=c simple <initial_number>

compss@bsc:~/tutorial_apps/c/simple$ runcompss ~/tutorial_apps/c/simple/master/simple 1

[INFO] Using default execution type: compss

[INFO] Using default location for project file: /opt/COMPSs/Runtime/configuration/xml/projects/

default_project.xml

[INFO] Using default location for resources file: /opt/COMPSs/Runtime/configuration/xml/resources/

default_resources.xml

[INFO] Inferred C/C++ language

----------------- Executing simple --------------------------

JVM_OPTIONS_FILE: /tmp/tmp.ItT1tQfKgP

COMPSS_HOME: /opt/COMPSs

Args: 1

WARNING: COMPSs Properties file is null. Setting default values

[(650) API] - Starting COMPSs Runtime v<version>

Initial counter value is 1

[BINDING] - @compss_wait_on - Entry.filename: counter

[BINDING] - @compss_wait_on - Runtime filename: d1v2_1497432831496.IT

Final counter value is 2

[(4222) API] - Execution Finished

--

2.4 Additional configurations

The COMPSs runtime has two configuration files: resources.xml and project.xml

. These files contain information about the execution environment and are completely
independent from the application.

For each execution users can load the default configuration files or specify their custom
configurations by using, respectively, the --resources=<absolute path to resources.xml>

and the --project=<absolute path to project.xml> in the runcompss command. The
default files are located in the /opt/COMPSs/Runtime/configuration/xml/ path. Users
can manually edit these files or can use the Eclipse IDE tool developed for COMPSs. For
further information about the Eclipse IDE please refer to Section 4.4.

For further details please check the Configuration Files Section inside the COMPSs
Installation and Administration Manual available at http://compss.bsc.es/releases/
compss/latest/docs/COMPSs_Installation_Manual.pdf .

6

http://compss.bsc.es/releases/compss/latest/docs/COMPSs_Installation_Manual.pdf
http://compss.bsc.es/releases/compss/latest/docs/COMPSs_Installation_Manual.pdf

3 Results and logs

3.1 Results

When executing a COMPSs application we consider different type of results:

• Application Output: Output generated by the application.

• Application Files: Files used or generated by the application.

• Tasks Output: Output generated by the tasks invoked from the application.

Regarding the application output, COMPSs will preserve the application output but
will add some pre and post output to indicate the COMPSs Runtime state. Figure 1
shows the standard output generated by the execution of the Simple Java application.
The green box highlights the application stdout while the rest of the output is produced
by COMPSs.

Figure 1: Output generated by the execution of the Simple Java application with COMPSs

Regarding the application files, COMPSs does not modify any of them and thus,
the results obtained by executing the application with COMPSs are the same than the
ones generated by the sequential execution of the application.

Regarding the tasks output, COMPSs introduces some modifications due to the fact
that tasks can be executed in remote machines. After the execution, COMPSs stores the
stdout and the stderr of each job (a task execution) inside the
/home/$USER/.COMPSs/$APPNAME/$EXEC NUMBER/jobs/ directory of the main applica-
tion node.

Figures 2 and 3 show an example of the results obtained from the execution of the Hello
Java application. While Figure 2 provides the output of the sequential execution of the
application (without COMPSs), Figure 3 provides the output of the equivalent COMPSs
execution. Please note that the sequential execution produces the "Hello World! (from

a task)" message in the stdout while the COMPSs execution stores the message inside
the job1 NEW.out file.

Figure 2: Sequential execution of the Hello java application

7

Figure 3: COMPSs execution of the Hello java application

3.2 Logs

COMPSs includes three log levels for running applications but users can modify them or
add more levels by editing the logger files under the /opt/COMPSs/Runtime/configuration
/log/ folder. Any of these log levels can be selected by adding the --log level=<debug

| info | off> flag to the runcompss command. The default value is off.
The logs generated by the NUM EXEC execution of the application APP by the user

USER are stored under /home/$USER/.COMPSs/$APP/$EXEC NUMBER/ folder (from this
point on: base log folder). The EXEC NUMBER execution number is automatically used
by COMPSs to prevent mixing the logs of data of different executions.

When running COMPSs with log level off only the errors are reported. This means
that the base log folder will contain two empty files (runtime.log and resources.log)
and one empty folder (jobs). If somehow the application has failed, the runtime.log

and/or the resources.log will not be empty and a new file per failed job will appear
inside the jobs folder to store the stdout and the stderr. Figure 4 shows the logs
generated by the execution of the Simple java application (without errors) in off mode.

Figure 4: Structure of the logs folder for the Simple java application in off mode

When running COMPSs with log level info the base log folder will contain two
files (runtime.log and resources.log) and one folder (jobs). The runtime.log file

8

contains the execution information retrieved from the master resource, including the file
transfers and the job submission details. The resources.log file contains information
about the available resources such as the number of processors of each resource (slots),
the information about running or pending tasks in the resource queue and the created
and destroyed resources. The jobs folder will be empty unless there has been a failed job.
In this case it will store, for each failed job, one file for the stdout and another for the
stderr. As an example, Figure 5 shows the logs generated by the same execution than
the previous case but with info mode.

Figure 5: Structure of the logs folder for the Simple java application in info mode

The runtime.log and resources.log are quite large files, thus they should be only
checked by advanced users. For an easier interpretation of these files the COMPSs Frame-
work includes a monitor tool. For further information about the COMPSs Monitor please
check Section 4.2.

Figures 6 and 7 provide the content of these two files generated by the execution of
the Simple java application.

Figure 6: runtime.log generated by the execution of the Simple java application

Running COMPSs with log level debug generates the same files as the info log level
but with more detailed information. Additionally, the jobs folder contains two files per
submitted job; one for the stdout and another for the stderr. In the other hand, the
COMPSs Runtime state is printed out on the stdout. Figure 8 shows the logs generated
by the same execution than the previous cases but with debug mode.

The runtime.log and the resources.log files generated in this mode can be extremely
large. Consequently, the users should take care of their quota and manually erase these
files if needed.

When running Python applications a pycompss.log file is written inside the base log
folder containing debug information about the specific calls to PyCOMPSs.

9

Figure 7: resources.log generated by the execution of the Simple java application

Figure 8: Structure of the logs folder for the Simple java application in debug mode

Furthermore, when running runcompss with additional flags (such as monitoring or
tracing) additional folders will appear inside the base log folder. The meaning of the files
inside these folders is explained in Section 4.

10

4 COMPSs Tools

4.1 Application graph

At the end of the application execution a dependency graph can be generated representing
the order of execution of each type of task and their dependencies. To allow the final
graph generation the -g flag has to be passed to the runcompss command; the graph
file is written in the base log folder/monitor/complete graph.dot at the end of the
execution.

Figure 9 shows a dependency graph example of a SparseLU java application. The
graph can be visualized by running the following command:

compss@bsc:~$ gengraph ~/.COMPSs/sparseLU.arrays.SparseLU_01/monitor/complete_graph.dot

Figure 9: The dependency graph of the SparseLU application

4.2 COMPSs Monitor

The COMPSs Framework includes a Web graphical interface that can be used to monitor
the execution of COMPSs applications. COMPSs Monitor is installed as a service and
can be easily managed by running any of the following commands:

11

compss@bsc:~$ /etc/init.d/compss-monitor usage

Usage: compss-monitor {start | stop | reload | restart | try-restart | force-reload | status}

4.2.1 Service configuration

The COMPSs Monitor service can be configured by editing the /opt/COMPSs/Tools/

monitor/apache-tomcat/conf/compss-monitor.conf file which contains one line per
property:

• COMPSS MONITOR Default directory to retrieve monitored applications (defaults to
the .COMPSs folder inside the root user).

• COMPSs MONITOR PORT Port where to run the compss-monitor web service (defaults
to 8080).

• COMPSs MONITOR TIMEOUT Web page timeout between browser and server (defaults
to 20s).

4.2.2 Usage

In order to use the COMPSs Monitor users need to start the service as shown in Figure
10.

Figure 10: COMPSs Monitor start command

And use a web browser to open the specific URL:

compss@bsc:~$ firefox http://localhost:8080/compss-monitor &

12

Figure 11: COMPSs monitoring interface

The COMPSs Monitor allows to monitor applications from different users and thus,
users need to first login to access their applications. As shown in Figure 11, the users can
select any of their executed or running COMPSs applications and display it.

To enable all the COMPSs Monitor features, applications must run the runcompss

command with the -m flag. This flag allows the COMPSs Runtime to store special infor-
mation inside inside the log base folder under the monitor folder (see Figures 12 and
13). Only advanced users should modify or delete any of these files. If the application
that a user is trying to monitor has not been executed with this flag, some of the COMPSs
Monitor features will be disabled.

13

compss@bsc:~/tutorial_apps/java/simple/jar$ runcompss -dm simple.Simple 1

[INFO] Using default execution type: compss

[INFO] Using default location for project file: /opt/COMPSs/Runtime/configuration/xml/projects/

default_project.xml

[INFO] Using default location for resources file: /opt/COMPSs/Runtime/configuration/xml/resources/

default_resources.xml

[INFO] Using default language: java

----------------- Executing simple.Simple --------------------------

WARNING: COMPSs Properties file is null. Setting default values

[(799) API] - Deploying COMPSs Runtime v<version>

[(801) API] - Starting COMPSs Runtime v<version>

[(801) API] - Initializing components

[(1290) API] - Ready to process tasks

[(1293) API] - Opening /home/compss/tutorial_apps/java/simple/jar/counter in mode OUT

[(1338) API] - File target Location: /home/compss/tutorial_apps/java/simple/jar/counter

Initial counter value is 1

[(1340) API] - Creating task from method increment in simple.SimpleImpl

[(1340) API] - There is 1 parameter

[(1341) API] - Parameter 1 has type FILE_T

Final counter value is 2

[(4307) API] - No more tasks for app 1

[(4311) API] - Getting Result Files 1

[(4340) API] - Stop IT reached

[(4344) API] - Stopping Graph generation...

[(4344) API] - Stopping Monitor...

[(6347) API] - Stopping AP...

[(6348) API] - Stopping TD...

[(6509) API] - Stopping Comm...

[(6510) API] - Runtime stopped

[(6510) API] - Execution Finished

--

Figure 12: Execution of the Simple Java application with the monitoring flag enabled

Figure 13: Logs generated by the Simple java application with the monitoring flag enabled

4.2.3 Graphical Interface features

In this section we provide a summary of the COMPSs Monitor supported features available
through the graphical interface:

14

• Resources information
Provides information about the resources used by the application

• Tasks information
Provides information about the tasks definition used by the application

• Current tasks graph
Shows the tasks dependency graph currently stored into the COMPSs Runtime

• Complete tasks graph
Shows the complete tasks dependecy graph of the application

• Load chart
Shows different dynamic charts representing the evolution over time of the resources
load and the tasks load

• Runtime log
Shows the runtime log

• Execution Information
Shows specific job information allowing users to easily select failed or uncompleted
jobs

• Statistics
Shows application statistics such as the accumulated cloud cost.

Attention: To enable all the COMPSs Monitor features applications
must run with the -m flag.

The webpage also allows users to configure some performance parameters of the mon-
itoring service by accessing the Configuration button at the top-right corner of the web
page.

For specific COMPSs Monitor feature configuration please check our FAQ section at
the top-right corner of the web page.

4.3 Application tracing

COMPSs Runtime can generate a post-execution trace of the execution of the application.
This trace is useful for performance analysis and diagnosis.

A trace file may contain different events to determine the COMPSs master state, the
task execution state or the file-transfers. The current release does not support file-transfers
informations.

During the execution of the application, an XML file is created in the worker nodes
to keep track of these events. At the end of the execution, all the XML files are merged
to get a final trace file.

15

In this manual we only provide information about how to obtain a trace and about
the available Paraver (the tool used to analyze the traces) configurations. For further
information about the application instrumentation or the trace visualization and config-
urations please check the COMPSs Tracing Manual available at http://compss.bsc.es
.

4.3.1 Trace Command

In order to obtain a post-execution trace file one of the following options -t, --tracing,
--tracing=true, --tracing=basic must be added to the runcompss command. All this
options activate the basic tracing mode; the advanced mode is activated with the option
--tracing=advanced. For further information about advanced mode check the COMPSs
Tracing Manual. Next, we provide an example of the command execution with the basic
tracing option enabled for a java K-Means application.

compss@bsc:~$ runcompss -t kmeans.Kmeans

*** RUNNING JAVA APPLICATION KMEANS

[INFO] Relative Classpath resolved: /path/to/jar/kmeans.jar

----------------- Executing kmeans.Kmeans --------------------------

Welcome to Extrae VERSION

Extrae: Parsing the configuration file (/opt/COMPSs/Runtime/configuration/xml/tracing/extrae_basic.xml)

begins

Extrae: Warning! <trace> tag has no <home> property defined.

Extrae: Generating intermediate files for Paraver traces.

Extrae: <cpu> tag at <counters> level will be ignored. This library does not support CPU HW.

Extrae: Tracing buffer can hold 100000 events

Extrae: Circular buffer disabled.

Extrae: Dynamic memory instrumentation is disabled.

Extrae: Basic I/O memory instrumentation is disabled.

Extrae: System calls instrumentation is disabled.

Extrae: Parsing the configuration file (/opt/COMPSs/Runtime/configuration/xml/tracing/extrae_basic.xml) has

ended

Extrae: Intermediate traces will be stored in /user/folder

Extrae: Tracing mode is set to: Detail.

Extrae: Successfully initiated with 1 tasks and 1 threads

WARNING: COMPSs Properties file is null. Setting default values

[(751) API] - Deploying COMPSs Runtime v<version>

[(753) API] - Starting COMPSs Runtime v<version>

[(753) API] - Initializing components

[(1142) API] - Ready to process tasks

...

...

...

merger: Output trace format is: Paraver

merger: Extrae 3.3.0 (revision 3966 based on extrae/trunk)

mpi2prv: Assigned nodes < Marginis >

mpi2prv: Assigned size per processor < <1 Mbyte >

mpi2prv: File set-0/TRACE@Marginis.0000001904000000000000.mpit is object 1.1.1 on node Marginis assigned to

processor 0

mpi2prv: File set-0/TRACE@Marginis.0000001904000000000001.mpit is object 1.1.2 on node Marginis assigned to

processor 0

mpi2prv: File set-0/TRACE@Marginis.0000001904000000000002.mpit is object 1.1.3 on node Marginis assigned to

processor 0

mpi2prv: File set-0/TRACE@Marginis.0000001980000001000000.mpit is object 1.2.1 on node Marginis assigned to

processor 0

mpi2prv: File set-0/TRACE@Marginis.0000001980000001000001.mpit is object 1.2.2 on node Marginis assigned to

processor 0

mpi2prv: File set-0/TRACE@Marginis.0000001980000001000002.mpit is object 1.2.3 on node Marginis assigned to

processor 0

16

http://compss.bsc.es

mpi2prv: File set-0/TRACE@Marginis.0000001980000001000003.mpit is object 1.2.4 on node Marginis assigned to

processor 0

mpi2prv: File set-0/TRACE@Marginis.0000001980000001000004.mpit is object 1.2.5 on node Marginis assigned to

processor 0

mpi2prv: Time synchronization has been turned off

mpi2prv: A total of 9 symbols were imported from TRACE.sym file

mpi2prv: 0 function symbols imported

mpi2prv: 9 HWC counter descriptions imported

mpi2prv: Checking for target directory existance... exists, ok!

mpi2prv: Selected output trace format is Paraver

mpi2prv: Stored trace format is Paraver

mpi2prv: Searching synchronization points... done

mpi2prv: Time Synchronization disabled.

mpi2prv: Circular buffer enabled at tracing time? NO

mpi2prv: Parsing intermediate files

mpi2prv: Progress 1 of 2 ... 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%

done

mpi2prv: Processor 0 succeeded to translate its assigned files

mpi2prv: Elapsed time translating files: 0 hours 0 minutes 0 seconds

mpi2prv: Elapsed time sorting addresses: 0 hours 0 minutes 0 seconds

mpi2prv: Generating tracefile (intermediate buffers of 838848 events)

This process can take a while. Please, be patient.

mpi2prv: Progress 2 of 2 ... 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%

done

mpi2prv: Warning! Clock accuracy seems to be in microseconds instead of nanoseconds.

mpi2prv: Elapsed time merge step: 0 hours 0 minutes 0 seconds

mpi2prv: Resulting tracefile occupies 991743 bytes

mpi2prv: Removing temporal files... done

mpi2prv: Elapsed time removing temporal files: 0 hours 0 minutes 0 seconds

mpi2prv: Congratulations! ./trace/kmeans.Kmeans_compss_trace_1460456106.prv has been generated.

[API] - Execution Finished

--

At the end of the execution the trace will be stored inside the trace folder under the
application log directory.

compss@bsc:~$ cd .COMPSs/kmeans.Kmeans_01/trace/

compss@bsc:~$ ls -1

kmeans.Kmeans_compss_trace_1460456106.pcf

kmeans.Kmeans_compss_trace_1460456106.prv

kmeans.Kmeans_compss_trace_1460456106.row

4.3.2 Trace visualization

The traces generated by an application execution are ready to be visualized with Paraver.
Paraver is a powerful tool developed by BSC that allows users to show many views of
the trace data by means of different configuration files. Users can manually load, edit or
create configuration files to obtain different trace data views.

If Paraver is installed, issue the following command to visualize a given tracefile:

compss@bsc:~$ wxparaver path/to/trace/trace_name.prv

For further information about Paraver please visit the following site:

http://www.bsc.es/computer-sciences/performance-tools/paraver

17

http://www.bsc.es/computer-sciences/performance-tools/paraver

4.4 COMPSs IDE

COMPSs IDE is an Integrated Development Environment to develop, compile, deploy
and execute COMPSs applications. It is available through the Eclipse Market as a plugin
and provides an even easier way to work with COMPSs.

For further information please check the COMPSs IDE User Guide available at: http:
//compss.bsc.es .

18

http://compss.bsc.es
http://compss.bsc.es

5 Special Execution Platforms

This section provides information about how to run COMPSs Applications in specific
platforms such as Docker, Chameleon or MareNostrum.

5.1 Docker

5.1.1 Introduction

Docker is an open-source project that automates the deployment of applications inside
software containers, by providing an additional layer of abstraction and automation of
operating-system-level virtualization on Linux. In addition to the Docker container en-
gine, there are other Docker tools that allow users to create complex applications (Docker-
Compose) or to manage a cluster of Docker containers (Docker Swarm).

COMPSs supports running a distributed application in a Docker Swarm cluster.

5.1.2 Requirements

In order to use COMPSs with Docker, some requirements must be fulfilled:

• Have Docker and Docker-Compose installed in your local machine.

• Have an available Docker Swarm cluster and its Swarm manager ip and port to
access it remotely.

• A Dockerhub account. Dockerhub is an online repository for Docker images. We
don’t currently support another sharing method besides uploading to Dockerhub,
so you will need to create a personal account. This has the advantage that it takes
very little time either upload or download the needed images, since it will reuse the
existing layers of previous images (for example the COMPSs base image).

5.1.3 Execution

The runcompss-docker execution workflow uses Docker-Compose, which is in charge of
spawning the different application containers into the Docker Swarm manager. Then the
Docker Swarm manager schedules the containers to the nodes and the application starts
running.

The COMPSs master and workers will run in the nodes Docker Swarm decides. To
see where the masters and workers are located in runtime, you can use:

docker -H ’<swarm_manager_ip:swarm_port>’ ps -a

The execution of an application using Docker containers with COMPSs consists of
2 steps:

19

5.1.4 Execution step 1: Creation of the application image

The very first step to execute a COMPSs application in Docker is creating your application
Docker image.
This must be done only once for every new application, and then you can run it as many
times as needed. If the application is updated for whatever reason, this step must be done
again to create and share the updated image.
In order to do this, you must use the runcompss-docker-gen-image tool, which is
available in the standard COMPSs application. This tool is the responsible of taking
your application, create the needed image, and upload it to Dockerhub to share it.
The image is created injecting your application into a COMPSs base image. This base
image is available in Dockerhub. In case you need it, you can pull it using the following
command:

docker pull compss/compss

The runcompss-docker-gen-image script receives 2 parameters:

• --c, --context-dir:
Specifies the context directory path of the application. This path MUST BE
ABSOLUTE, not relative. The context directory is a local directory that must
contain the needed binaries and input files of the app (if any). In its
simplest case, it will contain the executable file (a .jar for example). Keep the
context-directory as lightest as possible.

For example: --context-dir=’/home/compss-user/my-app-dir’ (where ’my-
app-dir’ contains ’app.jar’, ’data1.dat’ and ’data2.csv’). For more details, this con-
text directory will be recursively copied into a COMPSs base image. Specifically, it
will create all the path down to the context directory inside the image.

• --image-name:
Specifies a name for the created image. It MUST have this format: ’DOCKERHUB-
USERNAME/image-name’.
The DOCKERHUB USERNAME must be the username of your personal Docker-
hub account.
The image name can be whatever you want, and will be used as the identifier for
the image in Dockerhub. This name will be the one you will use to execute the
application in Docker.
For example, if my Dockerhub username is john123 and I want my image to be
named ”my-image-app”: –image-name=”john123/my-image-app”.

As stated before, this is needed to share your container application image with the
nodes that need it. Image tags are also supported (for example ”john123/my-image-
app:1.23).

5.1.5 Execution step 2: Run the application

To execute COMPSs in a Docker Swarm cluster, you must use the runcompss-docker
command, instead of runcompss.

20

IMPORTANT NOTE:
After creating the image, be sure to write down the absolute

context-directory and the absolute classpath (the absolute path to the
executable jar). You will need it to run the application using

runcompss-docker. In addition, if you plan on distributing the
application, you can use the Dockerhub image’s information tab to

write them, so the application users can retrieve them.

The command runcompss-docker has some additional arguments that will be needed
by COMPSs to run your application in a distributed Docker Swarm cluster environment.
The rest of typical arguments (classpath for example) will be delegated to runcompss
command.

These additional arguments must go before the typical runcompss arguments. The
runcompss-docker additional arguments are:

• --w, --worker-containers:
Specifies the number of worker containers the app will execute on. One more
container will be created to host the master. If you have enough nodes in the
Swarm cluster, each container will be executed by one node. This is the default
schedule strategy used by Swarm.
For example: --worker-containers=3

• --s, --swarm-manager:
Specifies the Swarm manager ip and port (format: ip:port).
For example: --swarm-manager=’129.114.108.8:4000’

• --i, --image-name:
Specify the image name of the application image in Dockerhub. Remember you must
generate this with runcompss-docker-gen-image. Remember as well that the format
must be: ’DOCKERHUB USERNAME/APP IMAGE NAME:TAG’ (the :TAG is
optional).
For example: --image-name=’john123/my-compss-application:1.9’

• --c, --context-dir:
Specifies the context directory of the app. It must be specified by the application
image provider.
For example: --context-dir=’/home/compss-user/my-app-context-dir’.

As optional arguments:

• --c-cpu-units:
Specifies the number of cpu units used by each container (default value is 4).
For example: --c-cpu-units:=16

21

• --c-memory:
Specifies the physical memory used by each container in GB (default value is 8 GB).
For example, in this case, each container would use as maximum 32 GB of physical
memory: --c-memory=32

Here is the format you must use with runcompss-docker command:

runcompss-docker --worker-containers=N

--swarm-manager=’<ip>:<port>’

--image-name=’DOCKERHUB_USERNAME/image_name’

--context-dir=’CTX_DIR’

[rest of classic runcompss args]

Or alternatively, in its shortest form:

runcompss-docker --w=N --s=’<ip>:<port>’ --i=’DOCKERHUB_USERNAME/image_name’ --c=’CTX_DIR’

[rest of classic runcompss args]

5.1.6 Execution with TLS

If your cluster uses TLS or has been created using Docker-Machine, you will have to
export two environment variables before using runcompss-docker:

On one hand, DOCKER TLS VERIFY environment variable will tell Docker that
you are using TLS:

export DOCKER_TLS_VERIFY="1"

On the other hand, DOCKER CERT PATH variable will tell Docker where to find
your TLS certificates. As an example:

export DOCKER_CERT_PATH="/home/compss-user/.docker/machine/machines/my-manager-node"

In case you have created your cluster using docker-machine, in order to know what
your DOCKER CERT PATH is, you can use this command:

docker-machine env my-swarm-manager-node-name | grep DOCKER_CERT_PATH

In which swarm-manager-node-name must be changed by the name docker-machine has
assigned to your swarm manager node.

With these environment variables set, you are ready to use runcompss-docker in a
cluster using TLS.

22

5.1.7 Execution results

The execution results will be retrieved from the master container of your application.

If your context-directory name is ’matmul’, then your results will be saved in the
’matmul-results’ directory, which will be located in the same directory you executed
runcompss-docker on.

Inside the ’matmul-results’ directory you will have:

• A folder named ’matmul’ with all the result files that were in the same directory
as the executable when the application execution ended. More precisely, this will
contain the context-directory state right after finishing your application execution.

Additionally, and for more advanced debug purposes, you will have some inter-
mediate files created by runcompss-docker (Dockerfile, project.xml, resources.xml),
in case you want to check for more complex errors or details.

• A folder named ’debug’, which (in case you used the runcompss debug option (-d)),
will contain the ’.COMPSs’ directory, which contains another directory in which
there are the typical debug files runtime.log, jobs, etc.
Remember .COMPSs is a hidden directory, take this into account if you do ls
inside the debug directory (add the -a option).

To make it simpler, we provide a tree visualization of an example of what your
directories should look like after the execution. In this case we executed the Matmul
example application that we provide you:

Figure 14: Result and log folders of a Matmul execution with COMPSs and Docker

23

5.1.8 Execution examples

Next we will use the Matmul application as an example of a Java application running
with COMPSs and Docker.

Imagine we have our Matmul application in /home/john/matmul and inside the matmul
directory we only have the file matmul.jar.

We have created a Dockerhub account with username ’john123’.
The first step will be creating the image:

runcompss-docker-gen-image --context-dir=’/home/john/matmul’

--image-name=’john123/matmul-example’

Now, we write down the context-dir (/home/john/matmul) and the classpath
(/home/john/matmul/matmul.jar). We do this because they will be needed for future
executions.

Since the image is created and uploaded, we won’t need to do this step anymore.

Now we are going to execute our Matmul application in a Docker cluster.
Take as assumptions:

• We will use 5 worker docker containers.

• The swarm-manager ip will be 129.114.108.8, with the Swarm manager listening
to the port 4000.

• We will use debug (-d).

• Finally, as we would do with the typical runcompss, we specify the main class
name and its parameters (16 and 4 in this case).

In addition, we know from the former step that the image name is john123/matmul-example,
the context directory is /home/john/matmul, and the classpath is /home/john/matmul/matmul.jar.
And this is how you would run runcompss-docker:

runcompss-docker --worker-containers=5

--swarm-manager=’129.114.108.8:4000’

--context-dir=’/home/john/matmul’

--image-name=’john123/matmul-example’

--classpath=/home/john/matmul/matmul.jar

-d

matmul.objects.Matmul 16 4

Here we show another example using the short arguments form, with the KMeans
example application, that is also provided as an example COMPSs application to you:

First step, create the image once:

runcompss-docker-gen-image --context-dir=’/home/laura/apps/kmeans’

--image-name=’laura-67/my-kmeans’

24

And now execute with 30 worker containers, and Swarm located in ’110.3.14.159:26535’.

runcompss-docker --w=30 --s=’110.3.14.159:26535’ --c=’/home/laura/apps/kmeans’

--image-name=’laura-67/my-kmeans’

--classpath=/home/laura/apps/kmeans/kmeans.jar

kmeans.KMeans

25

5.2 Chameleon

5.2.1 Introduction

The Chameleon project is a configurable experimental environment for large-scale cloud
research based on a OpenStack KVM Cloud. With funding from the National Science
Foundation (NSF), it provides a large-scale platform to the open research community
allowing them explore transformative concepts in deeply programmable cloud services,
design, and core technologies. The Chameleon testbed, is deployed at the University of
Chicago and the Texas Advanced Computing Center and consists of 650 multi-core cloud
nodes, 5PB of total disk space, and leverage 100 Gbps connection between the sites.

The project is led by the Computation Institute at the University of Chicago and
partners from the Texas Advanced Computing Center at the University of Texas at Austin,
the International Center for Advanced Internet Research at Northwestern University,
the Ohio State University, and University of Texas at San Antoni, comprising a highly
qualified and experienced team. The team includes members from the NSF supported
FutureGrid project and from the GENI community, both forerunners of the NSFCloud
solicitation under which this project is funded. Chameleon will also sets of partnerships
with commercial and academic clouds, such as Rackspace, CERN and Open Science Data
Cloud (OSDC).

For more information please check https://www.chameleoncloud.org/ .

5.2.2 Execution

Currently, COMPSs can only handle the Chameleon infrastructure as a cluster (deployed
inside a lease). Next, we provide the steps needed to execute COMPSs applications at
Chameleon:

• Make a lease reservation with 1 minimum node (for the COMPSs master instance)
and a maximum number of nodes equal to the number of COMPSs workers needed
plus one

• Instantiate the master image (based on the published image COMPSs 2.2 CC-
CentOS7)

• Attach a public IP and login to the master instance (the instance is correctly con-
textualized for COMPSs executions if you see a COMPSs login banner)

• Set the instance as COMPSs master by running /etc/init.d/chameleon init

start

• Copy your CH file (API credentials) to the Master and source it

• Run the chameleon cluster setup script and fill the information when prompted
(you will be asked for the name of the master instance, the reservation id and number
of workers). This scripts may take several minutes since it sets up the all cluster.

• Execute your COMPSs applications normally using the runcompss script

As an example you can check this video https://www.youtube.com/watch?v=BrQ6anPHjAU
performing a full setup and execution of a COMPSs application at Chameleon.

26

https://www.chameleoncloud.org/
https://www.youtube.com/watch?v=BrQ6anPHjAU

5.3 SuperComputers

To maintain the portability between different environments, COMPSs has a pre-build
structure (see Figure 15) to execute applications in SuperComputers. For this purpose,
users must use the enqueue compss script provided in the COMPSs installation. This
script has several parameters (see enqueue compss -h) that allow users to customize their
executions for any SuperComputer.

Figure 15: Structure of COMPSs queue scripts. In Blue user scripts, in Green queue
scripts and in Orange system dependant scripts

To make this structure works, the administrators must define a configuration file for
the queue system and a configuration file for the specific SuperComputer parameters. The
COMPSs installation already provides queue configurations for LSF and SLURM and sev-
eral examples for SuperComputer configurations. To create a new configuration we rec-
ommend to use one of the configurations provided by COMPSs (such as the configuration
for the MareNostrum III SuperComputer) or to contact us at support-compss@bsc.es .

For information about how to submit COMPSs applications at any Supercomputer
please refer to the COMPSs Supercomputers manual available at http://compss.bsc.

es/releases/compss/latest/docs/COMPSs_Supercomputers_Manual.pdf .

27

support-compss@bsc.es
http://compss.bsc.es/releases/compss/latest/docs/COMPSs_Supercomputers_Manual.pdf
http://compss.bsc.es/releases/compss/latest/docs/COMPSs_Supercomputers_Manual.pdf

6 Common Issues

This section provides answers for the most common issues of the execution of COMPSs
applications. For specific issues not covered in this section, please do not hesitate to
contact us at:

support-compss@bsc.es

6.1 How to debug

When the application does not behave as expected the first thing users must do is to run
it in debug mode executing the runcompss command withthe -d flag to enable the debug
log level.

In this case the application execution will produce the following files:

• runtime.log

• resources.log

• jobs folder

First, users should check the last lines of the runtime.log. If the file-transfers or
the tasks are failing an error message will appear in this file. If the file-transfers are
successfully and the jobs are submitted, users should check the jobs folder and look
at the error messages produced inside each job. Users should notice that if there are
RESUBMITTED files something inside the job is failing.

6.2 Tasks are not executed

If the tasks remain in Blocked state probably there are no existing resources matching the
specific task constraints. This error can be potentially caused by two facts: the resources
are not correctly loaded into the runtime, or the task constraints do not match with any
resource.

In the first case, users should take a look at the resouces.log and check that all the
resources defined in the project.xml file are available to the runtime. In the second case
users should re-define the task constraints taking into account the resources capabilities
defined into the resources.xml and project.xml files.

6.3 Jobs fail

If all the application’s tasks fail because all the submitted jobs fail, it is probably due to
the fact that there is a resource miss-configuration. In most of the cases, the resource
that the application is trying to access has no passwordless access through the configured
user. This can be checked by:

• Open the project.xml. (The default file is stored under
/opt/COMPSs/ Runtime/configuration/xml/projects/project.xml)

28

support-compss@bsc.es

• For each resource annotate its name and the value inside the User tag. Remember
that if there is no User tag COMPSs will try to connect this resource with the same
username than the one that launches the main application.

• For each annotated resourceName - user please try ssh user@resourceName. If the
connection asks for a password then there is an error in the configuration of the ssh
access in the resource.

The problem can be solved running the following commands:

compss@bsc:~$ scp ~/.ssh/id_dsa.pub user@resourceName:./mydsa.pub

compss@bsc:~$ ssh user@resourceName "cat mydsa.pub >> ~/.ssh/authorized_keys; rm ./mydsa.pub"

These commands are a quick solution, for further details please check the Additional
Configuration section inside the COMPSs Installation Manual available at our website
http://compss.bsc.es.

6.4 Compilation error: @Method not found

When trying to compile Java applications users can get some of the following compilation
errors:

error: package es.bsc.compss.types.annotations does not exist

import es.bsc.compss.types.annotations.Constraints;

^

error: package es.bsc.compss.types.annotations.task does not exist

import es.bsc.compss.types.annotations.task.Method;

^

error: package es.bsc.compss.types.annotations does not exist

import es.bsc.compss.types.annotations.Parameter;

^

error: package es.bsc.compss.types.annotations.Parameter does not exist

import es.bsc.compss.types.annotations.parameter.Direction;

^

error: package es.bsc.compss.types.annotations.Parameter does not exist

import es.bsc.compss.types.annotations.parameter.Type;

^

error: cannot find symbol

@Parameter(type = Type.FILE, direction = Direction.INOUT)

^

symbol: class Parameter

location: interface APPLICATION_Itf

error: cannot find symbol

@Constraints(computingUnits = "2")

^

symbol: class Constraints

location: interface APPLICATION_Itf

error: cannot find symbol

@Method(declaringClass = "application.ApplicationImpl")

^

symbol: class Method

location: interface APPLICATION_Itf

All these errors are raised because the compss-engine.jar is not listed in the CLASS-
PATH. The default COMPSs installation automatically inserts this package into the

29

http://compss.bsc.es

CLASSPATH but it may have been overwritten or deleted. Please check that your en-
vironment variable CLASSPATH containts the compss-engine.jar location by running
the following command:

$ echo $CLASSPATH | grep compss-engine

If the result of the previous command is empty it means that you are missing the
compss-engine.jar package in your classpath.

The easiest solution is to manually export the CLASSPATH variable into the user
session:

$ export CLASSPATH=$CLASSPATH:/opt/COMPSs/Runtime/compss-engine.jar

However, you will need to remember to export this variable every time you log out and
back in again. Consequently, we recommend to add this export to the .bashrc file:

$ echo "# COMPSs variables for Java compilation" >> ~/.bashrc

$ echo "export CLASSPATH=$CLASSPATH:/opt/COMPSs/Runtime/compss-engine.jar" >> ~/.bashrc

Attention: The compss-engine.jar is installed inside the COMPSs
installation directory. If you have performed a custom installation, the

path of the package may be different.

6.5 Jobs failed on method reflection

When executing an application the main code gets stuck executing a task. Taking a look
at the runtime.log users can check that the job associated to the task has failed (and all
its resubmissions too). Then, opening the jobX NEW.out or the jobX NEW.err files users
find the following error:

[ERROR|es.bsc.compss.Worker|Executor] Can not get method by reflection

es.bsc.compss.nio.worker.executors.Executor$JobExecutionException: Can not get method by reflection

at es.bsc.compss.nio.worker.executors.JavaExecutor.executeTask(JavaExecutor.java:142)

at es.bsc.compss.nio.worker.executors.Executor.execute(Executor.java:42)

at es.bsc.compss.nio.worker.JobLauncher.executeTask(JobLauncher.java:46)

at es.bsc.compss.nio.worker.JobLauncher.processRequests(JobLauncher.java:34)

at es.bsc.compss.util.RequestDispatcher.run(RequestDispatcher.java:46)

at java.lang.Thread.run(Thread.java:745)

Caused by: java.lang.NoSuchMethodException: simple.Simple.increment(java.lang.String)

at java.lang.Class.getMethod(Class.java:1678)

at es.bsc.compss.nio.worker.executors.JavaExecutor.executeTask(JavaExecutor.java:140)

... 5 more

30

This error is due to the fact that COMPSs cannot find one of the tasks declared in
the Java Interface. Commonly this is triggered by one of the following errors:

• The declaringClass of the tasks in the Java Interface has not been correctly defined.

• The parameters of the tasks in the Java Interface do not match the task call.

• The tasks have not been defined as public.

6.6 Jobs failed on reflect target invocation null pointer

When executing an application the main code gets stuck executing a task. Taking a look
at the runtime.log users can check that the job associated to the task has failed (and all
its resubmissions too). Then, opening the jobX NEW.out or the jobX NEW.err files users
find the following error:

[ERROR|es.bsc.compss.Worker|Executor]

java.lang.reflect.InvocationTargetException

at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)

at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)

at java.lang.reflect.Method.invoke(Method.java:606)

at es.bsc.compss.nio.worker.executors.JavaExecutor.executeTask(JavaExecutor.java:154)

at es.bsc.compss.nio.worker.executors.Executor.execute(Executor.java:42)

at es.bsc.compss.nio.worker.JobLauncher.executeTask(JobLauncher.java:46)

at es.bsc.compss.nio.worker.JobLauncher.processRequests(JobLauncher.java:34)

at es.bsc.compss.util.RequestDispatcher.run(RequestDispatcher.java:46)

at java.lang.Thread.run(Thread.java:745)

Caused by: java.lang.NullPointerException

at simple.Ll.printY(Ll.java:25)

at simple.Simple.task(Simple.java:72)

... 10 more

This cause of this error is that the Java object accessed by the task has not been
correctly transferred and one or more of its fields is null. The transfer failure is normally
caused because the transferred object is not serializable.

Users should check that all the object parameters in the task are either implementing
the serializable interface or following the java beans model (by implementing an empty
constructor and getters and setters for each attribute).

6.7 Tracing merge failed: too many open files

When too many nodes and threads are instrumented, the tracing merge can fail due to
an OS limitation, namely: the maximum open files. This problem usually happens when
using advanced mode due to the larger number of threads instrumented. To overcome
this issue users have two choices. First option, use Extrae parallel MPI merger. This
merger is automatically used if COMPSs was installed with MPI support. In Ubuntu you
can install the following packets to get MPI support:

sudo apt-get install libcr-dev mpich2 mpich2-doc

31

Please note that extrae is never compiled with MPI support when building it locally
(with buildlocal command).

To check if COMPSs was deployed with MPI support, you can check the installation
log and look for the following Extrae configuration output:

Package configuration for Extrae VERSION based on extrae/trunk rev. 3966:

Installation prefix: /gpfs/apps/MN3/COMPSs/Trunk/Dependencies/extrae

Cross compilation: no

CC: gcc

CXX: g++

Binary type: 64 bits

MPI instrumentation: yes

MPI home: /apps/OPENMPI/1.8.1-mellanox

MPI launcher: /apps/OPENMPI/1.8.1-mellanox/bin/mpirun

On the other hand, if you already installed COMPSs, you can check Extrae config-
uration executing the script /opt/COMPSs/Dependencies/extrae/etc/configured.sh.
Users should check that flags --with-mpi=/usr and --enable-parallel-merge are present
and that MPI path is correct and exists. Sample output:

EXTRAE_HOME is not set. Guessing from the script invoked that Extrae was installed in /opt/COMPSs/

Dependencies/extrae

The directory exists .. OK

Loaded specs for Extrae from /opt/COMPSs/Dependencies/extrae/etc/extrae-vars.sh

Extrae SVN branch extrae/trunk at revision 3966

Extrae was configured with:

$./configure --enable-gettimeofday-clock --without-mpi --without-unwind --without-dyninst --without-

binutils --with-mpi=/usr --enable-parallel-merge --with-papi=/usr --with-java-jdk=/usr/lib/jvm/java-7-

openjdk-amd64/ --disable-openmp --disable-nanos --disable-smpss --prefix=/opt/COMPSs/Dependencies/

extrae --with-mpi=/usr --enable-parallel-merge --libdir=/opt/COMPSs/Dependencies/extrae/lib

CC was gcc

CFLAGS was -g -O2 -fno-optimize-sibling-calls -Wall -W

CXX was g++

CXXFLAGS was -g -O2 -fno-optimize-sibling-calls -Wall -W

MPI_HOME points to /usr and the directory exists .. OK

LIBXML2_HOME points to /usr and the directory exists .. OK

PAPI_HOME points to /usr and the directory exists .. OK

DYNINST support seems to be disabled

UNWINDing support seems to be disabled (or not needed)

Translating addresses into source code references seems to be disabled (or not needed)

Please, report bugs to tools@bsc.es

Disclaimer: the parallel merge with MPI will not bypass the system’s maximum
number of open files, just distribute the files among the resources. If all resources belong
to the same machine, the merge will fail anyways.

The second option is to increase the OS maximum number of open files. For instance,
in Ubuntu add ulimit -n 40000 just before the start-stop-daemon line in the do start
section.

32

Please find more details on the COMPSs framework at

http://compss.bsc.es

33

http://compss.bsc.es

	COMP Superscalar (COMPSs)
	Executing COMPSs applications
	Prerequisites
	Runcompss command
	Running a COMPSs application
	Running Java applications
	Running Python applications
	Running C/C++ applications

	Additional configurations

	Results and logs
	Results
	Logs

	COMPSs Tools
	Application graph
	COMPSs Monitor
	Service configuration
	Usage
	Graphical Interface features

	Application tracing
	Trace Command
	Trace visualization

	COMPSs IDE

	Special Execution Platforms
	Docker
	Introduction
	Requirements
	Execution
	Execution step 1: Creation of the application image
	Execution step 2: Run the application
	Execution with TLS
	Execution results
	Execution examples

	Chameleon
	Introduction
	Execution

	SuperComputers

	Common Issues
	How to debug
	Tasks are not executed
	Jobs fail
	Compilation error: @Method not found
	Jobs failed on method reflection
	Jobs failed on reflect target invocation null pointer
	Tracing merge failed: too many open files

