
COMP Superscalar

PyCOMPSs Distributed Data Set
User Manual

November, 2018

This manual provides information only about the development of PyCOMPSs
applications using Distributed Data Set Interface. Before starting programming with
PyCOMPSs DDS, please make sure you are acquainted with COMP Superscalar
already. For more information about COMPSs, its installation process, programming
models, user manuals and extensive list of example applications, please refer to
http://compss.bsc.es/.

http://compss.bsc.es/

PyCOMPSs Distributed Data Set

Distributed Data Set (DDS) is a lightweight library to ease development of PyCOMPSs
applications. It provides an interface where programmers can load data from basic Python data
structures, generators, or files, distribute the data on available nodes, and run some most common
big data operations on it. By using DDS, number of code lines can be reduced, where performance
improvement is not expected comparing with regular PyCOMPSs applications.

How It Works?
To take advantage of DDS, first of all, the user should load the data to a new instance of it. Once
one of the ‘load’ functions is called, the data will be partitioned and sent to the available nodes, and
after that the user can perform any of DDS operations to manipulate the data simply by calling
methods of the instance. In DDS environment, the initial data is always distributed on arbitrary
number of partitions, and passed from one task to another as ‘Future Objects’, until the programmer
‘synchronizes’ or ‘collects’ it.
Moreover, it is also possible to create a new DDS with a ‘list’ of ‘Future Object’s from user-defined
functions, or send data from a DDS instance to other user defined functions as Future Objects
without retrieving it on the master node. This flexibility gives the user an opportunity to use DDS
methods anywhere in the code, mixing the data from those methods with his/her own functions
without sticking to pre-defined data operations, as well as replace some methods with DDS ones on
an existing project.

How To Use?
As a library, DDS comes along with PyCOMPSs, thus it is not required to install a new package. If
PyCOMPSs is already installed on the system, the following single line of Python code is enough to
import DDS:

>> from pycompss.dds import DDS

After that, we would have to create an instance of the DDS class and provide it with some data. In
the following code snippet, we are filling our DDS instance with the numbers from 0 to 10, which
basically means elements of the DDS will be those digits:

>> data = range(10)

>> dds = DDS().load(data)

Since the data set is ready to be used, we can simply call some methods of the DDS class. For
example, let’s assume we want to filter our numbers and keep only even numbers. Same as Python’s
built-in ‘filter’, all we need is a ‘lambda’ function- which will eliminate odd numbers, and send it as
a parameter to the DDS’s ‘filter’ method:

>> even_numbers = dds.filter (lambda x : x % 2 == 0).collect()

As we have already mentioned, without calling the ‘collect’ method, the data is never transferred to
the master node. Since in our example, we do not want to perform any other operation than
filtering, we call it to retrieve the even numbers between 0 and 10 as a list:

>> print(even_numbers)

[0, 2, 4, 6 , 8]

This is a very simple example of the use of DDS and before listing all available methods, let us
have a look at a more real-world case where we can take advantage of PyCOMPSs DDS. One of the
most-known Big Data examples is Word Count. The required code to implement it with DDS would
contain the following steps:

• reading data from a file
• splitting the lines into words (so that elements of DDS are not lines from the file, but words

from each line)
• counting the amount of each element (word)

And all these three steps can be performed within a single line of code:

>> from pycompss.dds import DDS

>> results = DDS().load_text_file(‘book.txt’).map_and_flatten(lambda x: x.split()).count_by_value(True)

>> print (results)

{‘a’ : 10, ‘the’ : 15, …}

For an explicit explanation, we can add that ‘load_text_file’ reads ‘book.txt’ file line-by-line and
loads it onto the DDS instance. At this point, elements of the DDS are ‘string’ lines, and each
partition contains the same amount of them. Then, the ‘map_and_flatten’ method does the
transformation from lines to words by parsing and spreading them inside the partitions. In other
words, if a partition contained lines before ‘map_and_flatten’ method, afterwards it contains all the
words from its lines as elements (see different mapping functions from ‘Available Methods’ section
in order to have more clear idea). The last method called is ‘count_by_value’ which retrieves a
dictionary where ‘keys’ are elements (words) of the DDS, and ‘values’ are times of occurrence. The
argument for this function- ‘True’, represents whether we want to collect the results, or we prefer to
have the final dictionary to be partitioned and distributed on nodes again. It would be useful to set it
to ‘False’, if we wanted to perform more operations on our data set.

Available Methods
All the methods provided by DDS are listed below with their arguments list, and descriptions:

• load – has one obligatory (iterator) and one arbitrary (number of partitions) parameters. Iterator
is any kind of ‘iterable’ object from Python, such as generators, lists, etc. Iterator represents the
data that will be distributed, and result of each iteration will be an element on DDS. The number
of partitions can be defined by user, and will be set to 3 by default. The return value of this
method is a DDS with a partitioned data. When the number of partitions is set to ‘-1’, DDS
assumes that the ‘iterator’ is already a list of Future Objects and skips data partitioning
(distributing) step.

• load_file – loads data from a file in chunks and creates one partition for each chunk. Since
COMPSs gives us the opportunity to read the files either on the master or worker nodes, this
option is enabled for this method as well (by default it will be read on the Master node and each
partition will be sent to worker nodes one-by-one) . The chunk (partition) size is arbitrary and
will be set to 1024 B if not defined by the user. The return value of this method is a DDS
containing Python Strings as elements.

• load_text_file – basically, same as ‘load_file’ method. The only difference is the fact that
reading a text file in bytes can cause incomplete words as elements in DDS. To avoid this
situation, text files are read line-by-line, and the chunk size can define the size of partitions in
‘amount of lines’ or in bytes.

• load_files_from_dir – reads multiple files from a given directory and saves them onto DDS by
creating (key, value) tuples where keys are file names, and values are the file contents stored as
Strings. Partitions can contain more than one file, when it is not possible to distribute one file in
more than one partition.

• collect – returns the data of a DDS. It is possible to synchronize the data and retrieve it inside a
list. However, when the value of ‘future_objects’ parameter is ‘True’, there a synchronization
point will not take place, and each partition will be retrieved as a Future Object. The
programmer can apply more operations on those Future Objects without transferring them to the
Master node.

>> DDS().load(range (10)).collect()

[0, 1, 2, 3, 4, 5, 6, 7, 8 , 9]

• map – same as the Python’s built-in map method, applies a given function to each element of
the DDS, and replaces the old value with the result.

>> DDS().load(range (10)).map(lambda x: x * 2).collect()

[0, 2, 4, 6, 8 ,10 ,12, 14, 16, 18]

• map_and_flatten – similar to the map method, with the difference that, the given function
should return an ‘iterable’ object, and each element of that ‘iterable’ will be spread over the
partition.

>> DDS().load([“First String”, “Second String”]).map_and_flatten(lambda x: x.split()).collect()

[‘First’, ‘String’, ‘Second’, ‘String’]

• map_partitions – applies a given function to the partitions of a DDS. It can be thought as a
map function where the input is a partition of DDS instead of an element of a partition.

• filter – same as Python’s built-in filter method, applies a given function to each element of the
DDS; if the result of the function applied to the element is ‘False’, then the element is removed
from the DDS.

• distinct – keeps only one of the repeating elements inside the DDS. The number of partitions is
kept as initial and final elements are distributed proportionally.

>> DDS().load([“First String”, “Second String”]).map_and_flatten(lambda x: x.split()).distinct().collect()

[‘First’, ‘String’, ‘Second’]

• reduce – same as the Python’s built-in reduce method, applies a given function to each pair of
the DDS elements and returns a single value. Since reductions are done inside partitions locally
and then merged in a tree structure, it is possible to define depth of the reduction tree. The initial
value for the reduce can be set as well.

>> DDS().load(range (10)).reduce((lambda a, b: a + b), initial = 100)

145

• reduce_by_key – similar to the regular reduce, with the only difference that the elements of the
DDS considered to be (key, value) tuples at the beginning of the reduction. The results can be
retrieved as a dictionary in the master node, or as Future Objects of ‘(key, value)’ pairs where
keys are unique, and values are reduced results for each key.

• foreach – applies a given function to each element of the DDS without returning any value. Has
a Barrier Point in order to make sure that all the tasks finish the execution.

• key_by – creates ‘(key, value)’ pairs from DDS data, where keys are generated by applying a
given ‘f’ function to the elements (key = f(value)).

>> DDS().load(range (3)).key_by(lambda x: str(x)).collect()

[(‘0’, 0), (‘1’, 1), (‘2’, 2)]

• min / max / sum / count – some self-explanatory functions that walk through all elements of
the DDS and return a single value.

>> DDS().load(range (100)).count()

100

