
1 Introduction

This manual contains all the necessary information to write and run COMPSs-
Redis applications. A COMPSs-Redis application is a program that is written
with the COMPSs framework and uses Redis as the storage backend. In this
manual we will assume that COMPSs is already installed and we will
focus on how to install the Redis utilities and the storage API for COMPSs.
Also, we will assume that the user understands the underlying programming
model of COMPSs and that he or she is able to write applications with it.
If some of these requirements are not met the user can refer to the COMPSs
manuals1. Also, it is advisable to read the Redis Cluster tutorial for beginners2

in order to understand all the terminology and words that are going to be used
here.

2 Installing COMPSs-Redis

In this section we will list all the requirements and dependencies that are nec-
essary to run a COMPS-Redis application.

2.1 Redis Server

redis-server is the core Redis program. It allows to create standalone Redis
instances that may form part of a cluster in the future. redis-server can be
obtained by following these steps:

1. Go to https://redis.io/download and download the last stable version.
This should download a redis-${version}.tar.gz file to your computer,
where ${version} is the current latest version.

2. Unpack the compressed file to some directory, open a terminal on it and
then type sudo make install if you want to install Redis for all users.
If you want to have it installed only for yourself you can simply type
make redis-server. This will leave the redis-server executable file in-
side the directory src, allowing you to move it to a more convenient place.
By convenient place we mean a folder that is in your PATH environment
variable. It is advisable to not delete the uncompressed folder yet.

3. If you want to be sure that Redis will work well on your machine then you
can type make test. This will run a very exhaustive test suite on Redis
features.

As a reminder, do not delete the uncompressed folder yet.

1https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-
superscalar/documentation

2https://redis.io/topics/cluster-tutorial

1

2.2 Redis Cluster Script

Redis needs an additional script to form a cluster from various Redis instances.
This script is called redis-trib.rb and can be found in the same tar.gz file that
contains the sources to compile redis-server in src/redis-trib.rb. Two
things must be done to make this script work:

1. Move it to a convenient folder. By convenient folder we mean a folder
that is in your PATH environment variable.

2. Make sure that you have Ruby and gem installed. Type gem install redis.

3. If you want to use COMPSs-Redis with Python you must also install the
PyPI packages redis and redis-py-cluster. It is also advisable to have
the PyPI package hiredis, which is a library that makes the interactions
with the storage to go faster.

3 COMPSs-Redis Bundle

COMPSs-Redis Bundle is a software package that contains the following:

1. A java JAR file named compss-redisPSCO.jar. This JAR contains the
implementation of a Storage Object that interacts with a given Redis
backend. We will discuss the details later.

2. A folder named scripts. This folder contains a bunch of scripts that
allows a COMPSs-Redis app to create a custom, in-place cluster for the
application.

3. A folder named python that contains the Python equivalent to
compss-redisPSCO.jar

This package can be obtained as follows:

1. Go to trunk/utils/storage/redisPSCO

2. Type ./make_bundle. This will leave a folder named COMPSs-Redis-bundle

with all the bundle contents.

4 Writing COMPSs-Redis applications

4.1 Java

This section describes how to develop Java applications with the Redis-COMPSs
storage. The application project should have the dependency induced by
compss-redisPSCO.jar satisfied. That is, it should be included in you pom.xml

if you are using Maven, or it should be listed in the dependencies section of the
used development tool.

2

A COMPSs-Redis application is almost identical to a regular COMPSs applica-
tion except for the presence of Storage Objects. A Storage Object is an object
that it is capable to interact with the storage backend. If a custom object ex-
tends the Redis Storage Object and implements the Serializable interface then
it will be ready to be stored and retrieved from a Redis database. An example
signature could be the following:

3

import s t o rage . StorageObject ;
import java . i o . S e r i a l i z a b l e ;

/∗∗
∗ A PSCO tha t conta ins a KD poin t
∗/
class RedisPoint
extends StorageObject implements S e r i a l i z a b l e {

// Coordinates o f our po in t
private double [] c oo rd ina t e s ;
/∗∗
∗ Write here your c l a s s−s p e c i f i c
∗ cons t ruc tor s , a t t r i b u t e s and methods .
∗/
double getManhattanDistance (RedisPoint other) {

. . .
}

}

The StorageObject object has some inherited methods that allow the user to
write custom objects that interact with the Redis backend. These methods can
be found in table 1.

Name Returns Comments

makePersistent(String id) Nothing
Inserts the object in the database with the id.
If id is null,
a random UUID will be computed instead.

deletePersistent() Nothing
Removes the object from the storage. It does nothing
if it wasn’t already there.

getID() String
Returns the current object identifier.
If the object is not persisted, returns null instead.

Table 1: Available methods from StorageObject

As an important observation, Redis Storage Objects that are used as
INOUTs must be manually updated. This is due to the fact that COMPSs
does not know the exact effects of the interaction between the object and the
storage, so the runtime cannot know if it is necessary to call makePersistent
after having used an INOUT or not (other storage approaches do live modifica-
tions to its storage objects). The following example illustrates this situation:

4

/∗∗
∗ A i s passed as INOUT
∗/
void accumulativePointSum (RedisPoint a , RedisPoint b) {

// This method computes the coordinate−wise sum between a and b
// and l e a v e s the r e s u l t in a
for (int i =0; i<a . getCoord inates () . l ength ; ++i) {

a . setComponent (i , a . getComponent (i) + b . getComponent (i)) ;
}
// De le te the o b j e c t from the s t o rage and
// re−i n s e r t the o b j e c t wi th the same o ld i d e n t i f i e r
St r ing o b j e c t I d e n t i f i e r = a . getID () ;
// Redis con ta ins the o ld ve r s i on o f the o b j e c t
a . d e l e t e P e r s i s t e n t () ;
// Now we w i l l i n s e r t the updated one
a . makePers i s tent (o b j e c t I d e n t i f i e r) ;

}

If the last three statements were not present, the changes would never be re-
flected on the RedisPoint a object.

4.2 Python

COMPSs-Redis is also available for Python. As happens with Java, we first
need to define a custom Storage Object. Let’s suppose that we want to write
an application that multiplies two matrices A, and B by blocks. We can define
a Block object that lets us store and write matrix blocks in our Redis backend:

from s t o rage . s t o r a g e o b j e c t import StorageObject
import s t o rage . ap i

class Block (StorageObject) :
def i n i t (s e l f , b lock) :

super (Block , s e l f) . i n i t ()
s e l f . b lock = block

def g e t b l o c k (s e l f) :
return s e l f . b lock

def s e t b l o c k (s e l f , new block) :
s e l f . b lock = new block

Let’s suppose that we are multiplying our matrices in the usual blocked way:

for i in range (MSIZE) :
for j in range (MSIZE) :

for k in range (MSIZE) :
mul t ip ly (A[i] [k] , B[k] [j] , C[i] [j])

5

Where A and B are Block objects and C is a regular Python object (e.g: a
Numpy matrix), then we can define multiply as a task as follows:

@task (c = INOUT)
def mult ip ly (a ob j ec t , b ob jec t , c , MKLProc) :

c += a o b j e c t . b lock ∗ b ob j e c t . b lock

Let’s also suppose that we are interested to store the final result in our storage.
A possible solution is the following:

for i in range (MSIZE) :
for j in range (MSIZE) :

p e r s i s t r e s u l t (C[i] [j])

Where persist_result can be defined as a task as follows:

@task ()
def p e r s i s t r e s u l t (obj) :

t o p e r s i s t = Block (obj)
t o p e r s i s t . make per s i s t en t ()

This way is preferred for two big reasons: we avoid to bring the resulting matrix
to the master node, and we can exploit the data locality by executing the task
in the node where last version of obj is located.

5 Launching COMPSs-Redis and using an ex-
isting Redis Cluster

If there is already a running Redis Cluster on the node/s where the COMPSs
application will run then only the following steps must be followed:

1. Create a storage_conf.cfg file that lists, one per line, the nodes where
the storage is present. Only hostnames or IPs are needed, ports are not
necessary here.

2. Add the flag --classpath=${path_to_COMPSs-redisPSCO.jar} to the
runcompss command that launches the application.

3. Add the flag --storage_conf=${path_to_your_storage_conf_dot_cfg_file}
to the runcompss command that launches the application.

4. If you are running a python app, also add the
--pythonpath=${app_path}:${path_to_the_bundle_folder}/python flag
to the runcompss command that launches the application.

As usual, the project.xml and resources.xml files must be correctly set. It
must be noted that there can be Redis nodes that are not COMPSs nodes
(although this is a highly unrecommended practice). As a requirement, there
must be at least one Redis instance on each COMPSs node listening

6

to the official Redis port 63793. This is required because nodes without
running Redis instances would cause a great amount of transfers (they will
always need data that must be transferred from another node). Also, any
locality policy will likely cause this node to have a very low workload, rendering
it almost useless.

6 Integrating COMPSs-Redis on queue system
based environments

COMPSs-Redis-Bundle also includes a collection of scripts that allow the user
to create an in-place Redis cluster with his/her COMPSs application. These
scripts will create a cluster using only the COMPSs nodes. Some parameters
can be tuned by the user via a storage_props.cfg file. This file must have the
following form:

REDIS_HOME=some_path

REDIS_NODE_TIMEOUT=some_nonnegative_integer_value

REDIS_REPLICAS=some_nonnegative_integer_value

There are some observations regarding to this configuration file:

1. REDIS_HOME must be equal to a path to some location that is not shared
between nodes. This is the location where the Redis sandboxes for the
instances will be created.

2. REDIS_NODE_TIMEOUT must be a nonnegative integer number that repre-
sents the amount of milliseconds that must pass before Redis declares the
cluster broken in the case that some instance is not available.

3. REDIS_REPLICAS must be equal to a nonnegative integer. This value will
represent the amount of replicas that a given shard will have. If possible,
Redis will ensure that all replicas of a given shard will be on different
nodes.

In order to run a COMPSs-Redis application on a queue system the user must
add the following flags to his or her enqueue_compss command:

1. --storage-home=${path_to_the_bundle_folder} This must point to
the root of the COMPSs-Redis bundle.

2. --storage-props=${path_to_the_storage_props_file} This must point
to the storage_props.cfg mentioned above.

3. --classpath=${path_to_COMPSs-redisPSCO.jar} As in the previous sec-
tion, the JAR with the storage API must be specified.

3https://en.wikipedia.org/wiki/List of TCP and UDP port numbers

7

4. If you are running a Python application, also add the
--pythonpath=${app_path}:${path_to_the_bundle_folder} flag

As a requirement, the supercomputer must not have any kind of zombie-killer
mechanisms. That is, the system should not kill daemonized processes running
on the given computing nodes.

8

