
1. Bindings

In addition to Java, COMPSs supports the execution of applications written in other languages
by means of bindings. A binding manages the interaction of the application with the COMPSs
Java runtime, providing the necessary language translation.

The next subsections describe the language bindings provided by COMPSs.

1.1. Python

COMPSs features a binding for Python 2.x applications. The next subsections explain how to
program a Python application for COMPSs and how to configure the binding library.

1.1.1. Programming Model

1.1.1.1. Task Selection

Like in the case of the Java language, a COMPSs Python application is a sequential program
that contains calls to tasks. In particular, the user can select as a task:

- Functions

- Instance methods: methods invoked on objects.

- Class methods: static methods belonging to a class.

Regarding task selection, in Python it is not done by means of an annotated interface but with
the use of Python decorators. In particular, the user needs to add, before the definition of the
function/method, a @task decorator that describes the task.

As an example, let us assume that the application calls a function func, which receives a string
parameter containing a file name and an integer parameter. The code of func updates the file.

my_file = ‘sample_file.txt’

func(my_file, 1)

In order to select func as a task, the corresponding @task decorator needs to be placed right
before the definition of the function, providing some metadata about the parameters of that
function. The metadata corresponding to a parameter is specified as an argument of the
decorator, whose name is the formal parameter’s name and whose value defines the type and
direction of the parameter. The parameter types and directions can be:

- Types: primitive types (integer, long, float, boolean), strings, objects (instances of user-
defined classes, dictionaries, lists, tuples, complex numbers) and files are supported.

- Direction: it can be read-only (IN - default), read-write (INOUT) or write-only (OUT).

COMPSs is able to automatically infer the parameter type for primitive types, strings and
objects, while the user needs to specify it for files. On the other hand, the direction is only
mandatory for INOUT and OUT parameters. Thus, when defining the parameter metadata in the
@task decorator, the user has the following options:

- INOUT: the parameter is read-write. The type will be inferred.

- OUT: the parameter is write-only. The type will be inferred.

- FILE: the parameter is a file. The direction is assumed to be IN.

- FILE_INOUT: the parameter is a read-write file.

- FILE_OUT: the parameter is a write-only file.

Consequently, please note that in the following cases there is no need to include an argument in
the @task decorator for a given task parameter:

- Parameters of primitive types (integer, long, float, boolean) and strings: the type of
these parameters can be automatically inferred by COMPSs, and their direction is
always IN.

- Read-only object parameters: the type of the parameter is automatically inferred, and
the direction defaults to IN.

Continuing with the example, in the following code snippet the decorator specifies that func has
a parameter called fi, of type FILE and INOUT direction. Note how the second parameter, i,
does not need to be specified, since its type (integer) and direction (IN) are automatically
inferred by COMPSs.

from pycompss.api.task import task

from pycompss.api.parameter import *

@task(f = FILE_INOUT)

def func(f, i):

 fd = open(f, ‘r+’)

 …

If the function or method returns a value, the programmer must specify the type of that value
using the returns argument of the @task decorator:

@task(returns = int)

def ret_func():

 return 1

For tasks corresponding to instance methods, by default the task is assumed to modify the
callee object (the object on which the method is invoked). The programmer can tell otherwise by
setting the isModifier argument of the @task decorator to False.

class MyClass(object):

 …

 @task(isModifier = False)

 def instance_method(self):

 … # self is NOT modified here

The programmer can also mark a task as a high-priority task with the priority argument of the
@task decorator. This way, when the task is free of dependencies, it will be scheduled before
any of the available low-priority (regular) tasks. This functionality is useful for tasks that are in
the critical path of the application’s task dependency graph.

Table 1 summarizes the arguments that can be found in the @task decorator.

@task(priority = True)

def func():

 …

Table 1 – Arguments of the @task decorator

Argument Value

Formal parameter
name

- INOUT: read-write parameter, all types except file (primitives, strings, objects).

- OUT: read-write parameter, all types except file (primitives, strings, objects).

- FILE: read-only file parameter.

- FILE_INOUT: read-write file parameter.

- FILE_OUT: write-only file parameter.

returns int (for integer and boolean), long, float, str, dict, list, tuple, user-

defined classes

isModifier True (default) or False

priority True or False (default)

1.1.1.2. Main Program

The main program of the application is a sequential code that contains calls to the selected
tasks. In addition, when synchronizing for task data from the main program, there exist two API
functions that need to be invoked:

- compss_open(file_name, mode = 'r'): similar to the Python open() call. It synchronizes
for the last version of file file_name and returns the file descriptor for that synchronized
file. It can receive an optional parameter mode, which defaults to ‘r’, containing the
mode in which the file will be opened (the open modes are analogous to those of
Python open()).

- compss_wait_on(obj, to_write = True): synchronizes for the last version of object obj
and returns the synchronized object. It can receive an optional boolean parameter
to_write, which defaults to True, that indicates whether the main program will modify the
returned object.

To illustrate the use of the aforementioned API functions, the following example first invokes a
task func that writes a file, which is later synchronized by calling compss_open(). Later in the
program, an object of class MyClass is created and a task method method that modifies the
object is invoked on it; the object is then synchronized with compss_wait_on(), so that it can be
used in the main program from that point on.

from pycompss.api.api import compss_open, compss_wait_on

my_file = ‘file.txt’

func(my_file)

fd = compss_open(my_file)

…

my_obj = MyClass()

my_obj.method()

my_obj = compss_wait_on(my_obj)

…

The corresponding task selection for the example above would be:

@task(f = FILE_OUT)

def func(f):

 …

class MyClass(object):

 …

 @task()

 def method(self):

 … # self is modified here

Table 2 summarizes the API functions to be used in the main program of a COMPSs Python
application.

Table 2 – COMPSs Python API functions

Function Use

compss_open(file_name,

mode = ‘r’)
Synchronizes for the last version of a file and returns its file descriptor.

compss_wait_on(obj,

to_write = True)
Synchronizes for the last version of an object and returns it.

1.1.1.2.1. Future Objects

If the programmer selects as a task a function or method that returns a value, that value is not
generated until the task executes. However, in order to keep the asynchrony of the task
invocation, COMPSs manages future objects: a representant object is immediately returned to
the main program when a task is invoked.

@task(returns = MyClass)

def ret_func():

 return MyClass(…)

…

o is a future object

o = ret_func()

The future object returned can be involved in a subsequent task call, and the COMPSs runtime
will automatically find the corresponding data dependency. In the following example, the future
object o is passed as a parameter and callee of two subsequent (asynchronous) tasks,
respectively:

o is a future object

o = ret_func()

…

another_task(o)

…

o.yet_another_task()

In order to synchronize the future object from the main program, the programmer proceeds in
the same way as with any object updated by a task:

o is a future object

o = ret_func()

…

o = compss_wait_on(o)

The future object mechanism is applied to primitive types, strings and objects (including the
Python built-in types list, dictionary, tuple and complex).

It is important to note that, for instances of user-defined classes, the classes of these objects
should have an empty constructor, otherwise the programmer will not be able to invoke task
instance methods on those objects:

class MyClass(object):

 def __init__(self): # empty constructor

 …

 …

o = ret_func()

invoking a task instance method on a future object can only be done

when an empty constructor is defined in the object’s class

o.yet_another_task()

1.1.1.3. Important Notes

For the COMPSs Python binding to function correctly, the programmer should not use relative
imports in her code. Relative imports can lead to ambiguous code and they are discouraged in
Python, as explained in:

 http://docs.python.org/2/faq/programming.html#what-are-the-best-practices-
for-using-import-in-a-module

1.1.2. Execution

1.1.2.1. Environment

The following environment variables must be defined before executing a COMPSs Python
application:

- JAVA_HOME: Java JDK installation directory (e.g. /usr/lib/jvm/java-6-openjdk/)

1.1.2.2. Command

In order to run a Python application with COMPSs, the script runcompssext can be used. An
example of an invocation of the script is:

The options of the script are:

- --lang=python

- --app=<path>: path to the .py file containing the main program.

- --classpath=<path>: path/s where to search for the application’s Python modules. The
default value is the current directory.

- --library_path=<path>: path/s where to search for libraries that are not in a standard
path. The default value is the variable $LD_LIBRARY_PATH.

- --cline_args=<args>: arguments to pass to the application.

- --project=<proj_file>: path of the project XML file.

- --resources=<res_file>: path of the resources XML file.

- --tracing=<true | false>: generate execution traces. Default is false.

> runcompssext

--lang=python

--app=$TEST_DIR/test.py

--classpath=$TEST_DIR

--library_path=/home/user/libdir
--cline_args="arg1 arg2"

--project=$TEST_DIR/project.xml

--resources=$TEST_DIR/resources.xml

--tracing=true

