

	

COMP Superscalar

User Guide
Version 1.1.1

	

	

	

	

	

	

	

	

	

	

	

1.	
 DEVELOPING	
 COMPSS	
 APPLICATIONS	
 ...	
 3	

1.1.	
 Main	
 application	
 code	
 ..	
 3	

1.2.	
 Remote	
 methods	
 code	
 ..	
 4	

1.3.	
 Java	
 annotated	
 interface	
 ...	
 4	

1.4.	
 Compiling	
 and	
 Packaging	
 the	
 application	
 ...	
 5	

1.5.	
 Running	
 the	
 application	
 ..	
 6	

1.6.	
 Logging	
 the	
 execution	
 ..	
 7	

1.7.	
 Execution	
 results	
 ...	
 8	

1.8.	
 Exploring	
 the	
 final	
 execution	
 graph	
 ..	
 8	

1.9.	
 COMPSs	
 monitoring	
 system	
 ...	
 8	

2.	
 SAMPLE	
 APPLICATIONS	
 ...	
 10	

2.1.	
 Matrix	
 multiplication	
 ..	
 10	

2.2.	
 Sparse	
 LU	
 decomposition	
 ...	
 10	

2.3.	
 BLAST	
 Workflow	
 ...	
 11	

3.	
 COMPSS	
 CONFIGURATION	
 ...	
 13	

3.1.	
 GRID/CLUSTER	
 CONFIGURATION	
 (STATIC	
 RESOURCES)	
 	
 15	

3.2.	
 CLOUD	
 PROVIDER	
 CONFIGURATION	
 (DYNAMIC	
 RESOURCES)	
 	
 16	

3.2.1	
 Configuration	
 ...	
 16	

3.1.1.	
 Resources	
 ...	
 16	

3.1.2.	
 Project	
 ...	
 17	

3.2.	
 Connectors	
 ..	
 17	

3.2.1.	
 Amazon	
 EC2	
 ..	
 17	

3.3.	
 rOCCI	
 Connector	
 ..	
 18	

	

1. Developing	
 COMPSs	
 applications	

In this section the steps to develop a COMPSs application will be illustrated; the sequential Simple
application will be used to explain an application porting to COMPSs. The user is required to select a set of
methods, invoked in a sequential application, to be run as remote tasks on the available resources.

A COMPSs application is composed of three parts:

 Main application code: the code that is executed sequentially and contains the calls to the user-
selected methods that will be executed on the Cloud.

 Remote methods code: the implementation of the remote tasks.

 Java annotated interface: It declares the selected methods to be run as remote tasks and
metadata used to schedule the tasks.

The main application code (sequential) will have the name of the application, always starting with capital
letter, in this case will be Simple.java. The Java annotated interface will be named as application name+
Itf.java in this case will be SimpleItf.java. And the code that implements the remote tasks will be called as
application name + Impl.java, in this case will be SimpleImpl.java.

All code examples are in the /home/user/workspace/ folder of the development environment.

1.1. Main	
 application	
 code	

In COMPSs the application is kept completely unchanged, i.e. no API calls need to be included in the main
application code in order to run the selected tasks on the nodes.

The COMPSs runtime is in charge of replacing the invocations to the user-selected methods with the
creation of remote tasks also taking care of the access to files from the main application code.

Let’s consider the Simple application example that takes an integer as input parameter and increases it by
one unit.

The main application code of Simple app (Simple.java) will be executed in a sequential way except the
Increment() method. COMPSs, as mentioned above, will replace at execution time the call to this method
generating a remote task on the remote node.

package simple;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

import simple.SimpleImpl;

public class Simple {

 public static void main(String[] args) {
 String counterName = "counter";
 int initialValue = args[0];

 /*--
 Creation of the file which will contain the counter variable
 --*/
 try {
 FileOutputStream fos = new FileOutputStream(counterName);
 fos.write(initialValue);
 System.out.println("Initial counter value is " + initialValue);
 fos.close();
 }catch(IOException ioe) {
 ioe.printStackTrace();
 }

 /*--
 Execution of the program
 --*/
 SimpleImpl.increment(counterName);

	

 /*--
 Reading from an object stored in a File
 --*/
 try {
 FileInputStream fis = new FileInputStream(counterName);
 System.out.println("Final counter value is " + fis.read());
 fis.close();
 }catch(IOException ioe) {
 ioe.printStackTrace();
 }
 }
}

1.2. 	
 	
 Remote	
 methods	
 code	

The following code is the implementation of the remote method of the Simple application (SimpleImpl.java)
that will be executed remotely by COMPSs.

package simple;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.FileNotFoundException;

public class SimpleImpl {
 public static void increment(String counterFile) {
 try{
 FileInputStream fis = new FileInputStream(counterFile);
 int count = fis.read();
 fis.close();

 FileOutputStream fos = new FileOutputStream(counterFile);
 fos.write(++count);
 fos.close();
 }catch(FileNotFoundException fnfe){
 fnfe.printStackTrace();
 }catch(IOException ioe){
 ioe.printStackTrace();
 }
 }
}

1.3. 	
 Java	
 annotated	
 interface	

The Java interface is used to declare the methods to be executed remotely along with Java annotations that
specify the necessary metadata about the tasks. The metadata can be of three different types:

1. For each parameter of a method, the data type (currently File type, primitive types and the String
type are supported) and its directions (IN, OUT or INOUT).

2. The Java class that contains the code of the method.

3. The constraints that a given resource must fulfil to execute the method, such as the number of
processors or main memory size.

Here follows a complete and detailed explanation of the usage of the metadata:

- Method-level Metadata: for each selected method, the following metadata has to be defined:

 @Method: Mandatory. It specifies the class that implements the method.

 @Constraints: Mandatory. The user can specify the capabilities that a resource must have in order
to run a method. The COMPSs runtime will create a VM (in a cloud environment), that fits the
specified requirements in order to perform the execution.

	

 Processor:

◦ processorCPUCount: Number of required processors.

 Memory:

◦ memoryPhysicalSize: Amount of GB of physical memory needed.

- Parameter-level Metadata (@Parameter): for each parameter and method, the user must define:

 Direction: Direction.IN, Direction.INOUT or Direction.OUT

 Type: COMPSs supports the following types for task parameters:

 Basic types: Type.BOOLEAN, Type.CHAR, Type.BYTE, Type.SHORT, Type.INT, Type.LONG,
Type.FLOAT, Type.DOUBLE. They can only have IN direction, since primitive types in Java are
always passed by value.

 String: Type.STRING. It can only have IN direction, since Java Strings are immutable.

 File: Type.FILE. It can have any direction (IN, OUT or INOUT). The real Java type associated
with a FILE parameter is a String that contains the path to the file. However, if the user specifies
a parameter as a FILE, COMPSs will treat it as such.

 Object: Type.Object. It can have any direction (IN, OUT or INOUT).

 Return type: Any object, a basic type or a generic class object.

 Method modifiers: the method has to be STATIC.

The Java annotated interface of the Simple app example (SimpleItf.java) declares the Increment() method
that will be executed remotely. The method implementation can be found in simple.SimpleImpl class and
needs a single input parameter, a string containing a path to the file counterFile. Besides, in this example
there are constraints on the minimum number of processors and minimum memory size needed to run the
method.

package simple;

import integratedtoolkit.types.annotations.Constraints;
import integratedtoolkit.types.annotations.Method;
import integratedtoolkit.types.annotations.Parameter;
import integratedtoolkit.types.annotations.Parameter.Direction;
import integratedtoolkit.types.annotations.Parameter.Type;

public interface SimpleItf {

 @Constraints(processorCPUCount = 1, memoryPhysicalSize = 0.3f)
 @Method(declaringClass = "simple.SimpleImpl")
 void increment(
 @Parameter(type = Type.FILE, direction = Direction.INOUT)
 String file
);

}

	

1.4. Compiling	
 and	
 Packaging	
 the	
 application	

The application can be compiled either using the command line or through the Eclipse IDE tool available
on the SDK VM.

	

	

user@bsccompss:~$ cd /home/user/workspace/

user@bsccompss:~/workspace$ javac simple/src/simple/*.java

user@bsccompss:~/workspace/simple/src$ jar cf simple.jar simple

Once the application is compiled and packaged in a Jar archive it have to be bundled in a tar.gz package;
this package will be automatically deployed by COMPSs in a cloud environment, while in the case of a
static pool of physical nodes the jar has to be manually pre-deployed.

In this example the application package is stored under /home/user/workspace/APPNAME/package

user@bsccompss:~/workspace/simple/src$ tar czvf Simple.tar.gz simple.jar

user@bsccompss:~/workspace/simple/src$ mv Simple.tar.gz
~/workspace/simple/package/

In case of having to supply external binaries or libraries to the application, as is the case of Blast (see
Section 2) they have to be copied into a directory named “binary”, and “lib” respectively and packaged in
the tar.gz package as shown below:

	

	

	

	

	

	

	

	

Figure	
 1	
 -­‐	
 An	
 example	
 package	

1.5. Running	
 the	
 application	

To run the application on the SDK VM, the path of the application jar must be added to CLASSPATH system
variable:

user@bsccompss:~$ cp ~/workspace/simple/package/Simple.tar.gz /home/user/

user@bsccompss:~$ tar xzf Simple.tar.gz

user@bsccompss:~$ export CLASSPATH=$CLASSPATH:/home/user/simple.jar

	

Once the execution environment is ready, the application can be launched through the following command:

user@bsccompss:~$ runcompss simple.Simple <initial_number>

	

	

	
 	
 	

1.6. 	
 Logging	
 the	
 execution	

The it.log file, that can be found generally in $HOME/it.log (/home/user/it.log, in case of SDK VM). It
shows information on the execution of the application including file transfers and job submission details.

user@bsccompss:~$ tail -f it.log

On the other hand, the resources.log file, that can be found in $HOME/resources.log. It shows
information about the available resources such as: number of processors of each resource (slots),
information about running or pending tasks in the resource queue as depicted in the following picture:

	

	

	

	

	

	

	

	

Figure	
 3	
 -­‐	
 Information	
 on	
 the	
 available	
 resources	

Figure	
 2	
 -­‐	
 Execution	
 of	
 a	
 COMPSs	
 application	

	

1.7. 	
 Execution	
 results	

After the execution, COMPSs stores the files corresponding to the stdout and stderr of each task in the
/home/user/IT/APPNAME/ directory.

Figure	
 4	
 -­‐	
 The	
 log	
 of	
 each	
 task	
 can	
 be	
 retrieved	
 at	
 the	
 end	
 of	
 the	
 execution	

The results of an execution will be stored in the /home/user/IT/simple.Simple/ directory in the example
application.

1.8. 	
 Exploring	
 the	
 final	
 execution	
 graph	

At the end of the execution a dependency graph can be generated representing the order of execution of
each type of task and their dependencies.

user@bsccompss:~$ gengraph graph.dot

	

	

Figure	
 5	
 -­‐	
 The	
 dependency	
 graph	
 of	
 the	
 SparseLU	
 application	

1.9. 	
 COMPSs	
 monitoring	
 system	

The COMPSs runtime exposes a Web Service with a graphical interface that can be used to monitor the
progress of running applications. In order to see it, a specific URL must be used in a web browser:

http://localhost:8080/compss-monitor

	

	

As it can be seen in Figure 6, the interface gives details about the execution graph (it can be seen how the
data dependency graph is built and consumed at real time, and the status of the tasks), the resource usage
information, the number of tasks, and the execution time per task.

	

	

Figure	
 6	
 –	
 COMPSs	
 monitoring	
 interface	
 example	

	

	

2. Sample	
 applications	

The examples in this section consider the execution in a cloud platform where the VMs mount a
common storage on /sharedDisk directory. This is useful in the case of applications that require
working with big files, allowing to transfer data only once, at the beginning of the execution, and to
enable the application to access the data directly during the rest of the execution.

The Blast sample workflows available in the development environment and explained in the next
section takes advantage of this functionality.

The development environment provides some sample COMPSs applications that can be found in
/home/user/workspace/ directory. The following section describes in detail the development of each
of them.

2.1. Matrix	
 multiplication	

Matrix Multiplication (Matmul) is a pure Java application that multiplies two matrices in a direct way.
The application creates 2 matrices of N x N size initialized with values, and multiply the matrices by
blocks of 40 floats (by default).

In this application the multiplication is implemented in the multiplyAccumulative that is thus selected
as the task that will be executed remotely. In order to run the application the matrix dimension has to
be supplied.

user@bsccompss:~$ cp ~/workspace/matmul/package/Matmul.tar.gz /home/user/

user@bsccompss:~$ tar xzf Matmul.tar.gz

user@bsccompss:~$ export CLASSPATH=$CLASSPATH:/home/user/matmul.jar

The command line to execute the application:

user@bsccompss:~$ runcompss matmul.Matmul <matrix_dim>

	

2.2. Sparse	
 LU	
 decomposition	

SparseLU multiplies two matrices using the factorization method of LU decomposition, which
factorizes a matrix as a product of a lower triangular matrix and an upper one.

	

	

The matrix is divided into N x N blocks on where 4 types of operations will be applied modifying the
blocks: lu0, fwd, bdiv and bmod. These four operations are implemented in four methods that are
selecetd as the tasks that will be executed remotely. In order to run the application the matrix
dimension has to be provided.

user@bsccompss:~$ cp ~/workspace/sparselu/package/SparseLU.tar.gz /home/user/

user@bsccompss:~$ tar xzf SparseLU.tar.gz

user@bsccompss:~$ export CLASSPATH=$CLASSPATH:/home/user/sparselu.jar

The command line to execute the application:

user@bsccompss:~$ runcompss sparselu.SparseLU <matrix_dim>

	

2.3. BLAST	
 Workflow	

BLAST is a widely-used bioinformatics tool for comparing primary biological sequence information,
such as the amino-acid sequences of different proteins or the nucleotides of DNA sequences with
sequence databases, identifying sequences that resemble the query sequence above a certain
threshold. The work performed by the COMPSs Blast workflow is computationally intensive and
embarrassingly parallel.

Figure	
 7	
 -­‐	
 The	
 COMPSs	
 Blast	
 workflow	

The workflow describes the three blocks of the workflow implemented in the Split, Align and
Assembly methods. The second one is the only method that is chosen to be executed remotely, so it
is the unique method defined in the interface file. The Split method chops the query sequences file in
N fragments, Align compares each sequence fragment against the database by means of the Blast
binary, and Assembly combines all intermediate files into a single result file.

This application uses a database that will be on the shared disk space avoiding transferring the entire
database (which can be large) between the virtual machines.

	

	

user@bsccompss:~$ cp ~/workspace/blast/package/Blast.tar.gz /home/user/

user@bsccompss:~$ tar xzf Blast.tar.gz

user@bsccompss:~$ export CLASSPATH=$CLASSPATH:/home/user/blast.jar

The command line to execute the workflow:

user@bsccompss:~$ runcompss blast.Blast <debug> <bin_location>

 <database_file> <sequences_file> <frag_number> <tmpdir>

 <output_file>

Where:	

- debug: The debug flag of the application [true | false].

- bin_location: Path of the Blast binary.

- database_file: Path of database file; the shared disk /sharedDisk/ is suggested to avoid big data
transfers.

- sequences_file: Path of sequences file.

- frag_number: Number of fragments of the original sequence file, this number determines the
number of parallel Align tasks.

- tmpdir: Temporary directory (/home/user/tmp/).

- output_file: Path of the result file.

Example:

user@bsccompss:~$ runcompss blast.Blast true

/home/user/workspace/blast/binary/blastall
/sharedDisk/Blast/databases/swissprot/swissprot
/sharedDisk/Blast/sequences/sargasso_test.fasta 4 /tmp/
/home/user/out.txt

	

	

3. COMPSs	
 Configuration	

COMPSs SDK VM is a preconfigured light 64-bit Xubuntu distribution providing the necessary
set of tools to develop COMPSs applications. The development environment includes an
Eclipse IDE, the COMPSs framework and a set of sample applications in order to ease the
comprehension of the programing model in a more straightforward way.

The COMPSs framework is installed in /opt/COMPSs/;

For the development of new projects in Eclipse please remember to add the reference to the
COMPSs runtime adding /opt/COMPSs/Runtime/rt/compss-rt.jar as referenced library.

Please note that in case of changing the number of available cores in the physical SDK
machine, this should be reflected in the COMPSs configurations files, resources.xml and
project.xml, as indicated in the picture.

project.xml

user@bsccompss:~$ cat /opt/COMPSs/Runtime/xml/projects/project.xml
<?xml version="1.0" encoding="UTF-8"?>
!<Project>
! <!--Description for any physical node-->
! <Worker Name=“localhost">
! <InstallDir>/IT_worker/</InstallDir>
! <WorkingDir>/home/user/</WorkingDir>
! <User>user</User>
! <LimitOfTasks>2</LimitOfTasks>
! </Worker>
!</Project>

resources.xml

user@bsccompss:~$ cat /opt/COMPSs/Runtime/xml/resources/resources.xml
<?xml version="1.0" encoding="UTF-8"?>
!<ResourceList>
! <!--Description for any physical node-->
! <Resource Name=“localhost">
! <Capabilities>
! <Host>
! <TaskCount>0</TaskCount>
! <Queue>short</Queue>
! <Queue/>
! </Host>
! <Processor>
! <Architecture>IA32</Architecture>
! <Speed>3.0</Speed>
! <CPUCount>2</CPUCount>
! </Processor>
! <OS>
! <OSType>Linux</OSType>
! <MaxProcessesPerUser>32</MaxProcessesPerUser>
! </OS>
! <StorageElement>
! <Size>30</Size>
! </StorageElement>
! 	
 <Memory>
! <PhysicalSize>2</PhysicalSize>
! <VirtualSize>8</VirtualSize>
! </Memory>
! <ApplicationSoftware>
! <Software>Java</Software>
! </ApplicationSoftware>
! <Service/>
! <VO/>
! <Cluster/>
! <FileSystem/>

	

	

! <NetworkAdaptor/>
! <JobPolicy/>
! <AccessControlPolicy/>
! </Capabilities>
! <Requirements/>
! </Resource>
<ResourceList>

In order to use external resources to execute the applications, the following steps have to be
followed:

1. Install the COMPSs framework on the new resources following the installation manual
available at http://www.bsc.es/compss.

2. Edit the resources.xml and project.xml files in the master machine (the SDK VM) in
order to be aware of the new resources (Section 4).

3. Create/set the WorkingDir in the path specified in project.xml

4. Set SSH passwordless access to the rest of the remote resources.

5. In case of cloud resources the application will be deployed automatically, and this,
should be set up on COMPSs configuration files. In case of static resources, deploy the
application manually on the new ones (see section 3.1 and 3.2).

	

	

3.1.	
 Grid/Cluster	
 configuration	
 (static	
 resources)	

On the following lines, we provide examples about configuration files for Grid and Cluster
environments, which can serve as a reference. They can also be compared to the examples
previously provided to see the differences in such scenarios.

project.xml

<?xml version="1.0" encoding="UTF-8"?>
<Project>
 <!--Description for any physical node-->

 <Worker Name="172.20.200.18">
 <InstallDir>/opt/COMPSs/Runtime/scripts/system/</InstallDir>
 <WorkingDir>/tmp/</WorkingDir>
 <User>user</User>
 <LimitOfTasks>1</LimitOfTasks>
 </Worker>

 <Worker Name="172.20.200.19">
 …
 </Worker>

! …
</Project>

	

resources.xml

?xml version="1.0" encoding="UTF-8"?>
<ResourceList>
 <!--Description for any physical node-->

 <Resource Name="172.20.200.18">
 <Capabilities>
 <Host>
 <TaskCount>0</TaskCount>
 <Queue>short</Queue>
! <Queue/>
! </Host>
! <Processor>
! <Architecture>IA32</Architecture>
! <Speed>3.0</Speed>
! <CPUCount>1</CPUCount>
! </Processor>
! <OS>
! <OSType>Linux</OSType>
! <MaxProcessesPerUser>32</MaxProcessesPerUser>
! </OS>
! <StorageElement>
! <Size>30</Size>
! </StorageElement>
! …
 <Memory>
! <PhysicalSize>1</PhysicalSize>
! <VirtualSize>8</VirtualSize>
! </Memory>
! <ApplicationSoftware>
! <Software>Java</Software>
! </ApplicationSoftware>
! <Service/>
! <VO/>
! <Cluster/>
! <FileSystem/>
! <NetworkAdaptor/>
! <JobPolicy/>
! <AccessControlPolicy/>

	

	

! </Capabilities>
! <Requirements/>
! </Resource>

! <Resource Name="172.20.200.19">
! ...
! </Resource>

<ResourceList>

	

3.2.	
 Cloud	
 provider	
 configuration	
 (dynamic	
 resources)	

The COMPSs runtime communicates with the Cloud by means of Cloud connectors. Each
connector implements the interaction of the runtime with a given Cloud provider, more precisely
by supporting four basic operations: ask for the price of a certain VM in the provider, get the
time needed to create a VM, create a new VM and terminate a VM.

Connectors abstract the runtime from the particular API of each provider; furthermore, this
design facilitates the addition of new connectors for other providers.

The next subsections describe the basic configuration options for Cloud provider connectors
and provide a description of each of the connectors currently available.	
 	

3.2.1	
 Configuration	

The connectors can be configured by providing some information in the resources.xml and
project.xml files. These files are located at <COMPSs_INSTALL_DIR>/xml/projects and
<COMPSs_INSTALL_DIR>/xml/resources. Examples files for different backends are provided
in the <COMPSs_INSTALL_DIR>/xml/projects/examples and
<COMPSs_INSTALL_DIR>/xml/resources/examples folders.

3.1.1. Resources	

The resources.xml file can contain one or more tags <CloudProvider> that encompass the
information about a particular Cloud provider, associated to a given connector. The tag must
have an attribute name to uniquely identify the provider. Table 1 summarizes the information to
be specified by the user inside this tag.

Table	
 1	
 –	
 Configuration	
 of	
 resources.xml	
 file,	
 tag	
 <CloudProvider>	

Server Endpoint of the provider’s server

Connector Class that implements the connector

ImageList
- Image

o ApplicationSoftware

 Software

Multiple entries of VM templates
- VM image

o Multiple entries of software
installed in the VM image

 Software installed in the
VM image

InstanceTypes

- Resource
o Capabilities

 Processor

 StorageElement

 Memory

Multiple entries of resource templates
- Instance type offered by the provider

o Hardware details of instance type
 Architecture and number

of available cores
 Size in GB of the storage
 PhysicalSize, in GB of the

available RAM

	

	

	

3.1.2. Project	

The project.xml complements the information about Cloud providers specified in the
resources.xml file. This file can contain a <Cloud> tag where to specify a list of providers, each
with a <Provider> tag, whose name attribute must match one of the providers in the
resources.xml file. Thus, the project.xml file must contain a subset of the providers specified in
the resources.xml file. Table 2 summarizes the information to be specified by the user in the
<Provider> tags of the project.xml file.

	

Table	
 2	
 -­‐	
 Configuration	
 of	
 project.xml	
 file,	
 tag	
 <Cloud>	

InitialVMs Number of VM to be created at the beginning of the
application

minVMCount Minimum number of VMs available in the computation

maxVMCount Maximum number of VMs available in the computation

Provider
- LimitOfVMs

- ImageList

o Image

 InstallDir

 WorkingDir

 User

 Package

• Source

• Target

- InstanceTypes

o Resource

- Property

o Name

o Value

Multiple entries of Cloud providers
- Maximum number of VMs allowed by the

provider
- Multiple entries of VM images available at the

provider
o VM image

 Path of the COMPSs worker
scripts in the image

 COMPSs working directory
in the image

 Account username
 Multiple entries of user

packages to be deployed to
the VM

• Local path of the
package

• VM path where to
deploy the
package

- Resource types available at the provider
o Instance type offered by the provider

- Multiple entries of provider-specific properties
o Name of the property
o Value of the property

	

3.2. 	
 Connectors	

3.2.1. Amazon	
 EC2	

The COMPSs runtime features a connector to interact with the Amazon Elastic Compute Cloud
(EC2).

Amazon EC2 offers a well-defined pricing system for VM rental. A total of 8 pricing zones are
established, corresponding to 8 different locations of Amazon datacenters around the globe.
Besides, inside each zone, several per-hour prices exist for VM instances with different
capabilities. The EC2 connector stores the prices of standard on-demand VM instance types
(t1.micro, m1.small, m1.medium, m1.large and m1.xlarge) for each zone. Spot instances are not
currently supported by the connector.

	

	

When the COMPSs runtime chooses to create a VM in the Amazon public Cloud, the EC2
connector receives the information about the requested characteristics of the new VM, namely
the number of cores, memory, disk and architecture (32/64 bits). According to that information,
the connector tries to find the VM instance type in Amazon that better matches those
characteristics and then requests the creation of a new VM instance of that type.

Once an EC2 VM is created, a whole hour slot is paid in advance; for that reason, the connector
keeps the VM alive at least during such period, saving it for later use if necessary. When the
task load decreases and a VM is no longer used, the connector puts it aside if the hour slot has
not expired yet, instead of terminating it. After that, if the task load increases again and the EC2
connector requests a VM, first the set of saved VMs is examined in order to find a VM that is
compatible with the requested characteristics. If one is found, the VM is reused and becomes
eligible again for the execution of tasks; hence, the cost and time to create a new VM are not
paid. A VM is only destroyed when the end of its hour slot is approaching and it is still in saved
state.

Table 3 summarizes the provider-specific properties that must be defined in the project.xml file
for the Amazon EC2 connector.

	

Table	
 3	
 –	
 Properties	
 of	
 the	
 Amazon	
 EC2	
 connector	

Placement Location of the amazon datacentre to use

Access Key Id Identifier of the access key of the Amazon EC2 account

Secret Key Id Identifier of the secret key of the Amazon EC2 account

Key host
location Path to the SSH key in the local host, used to connect to the VMs

KeyPair name Name of the key pair to use

SecurityGroup
name Name of the security group to use

	

	

3.3. rOCCI	
 Connector	

In order to execute a COMPSs application in the EGI Cloud the rOCCI connector has to be
used and the configuration files have to be properly edited. The connector uses the rOCCI
binary client being not available a Java API. These connector needs an additional file that
provides details of each resource template available at the provider and that is located at
<COMPSs_INSTALL_DIR>/xml/templates. The user must indicate which virtual images and
instance types are offered by the specific provider; thus, when the runtime asks for the creation
of a VM, the connector selects the appropriate image and resource template according to the
requirements (in terms of cpu, memory, disk, etc) and invokes the rOCCI client through Mixins

Table	
 4 contains the rOCCI specific properties that must be defined in the project.xml file.

Table	
 4	
 -­‐	
 rOCCI	
 extensions	
 in	
 the	
 project.xml	
 file	

Provider

ProxyCA Path of the x509 certificate used to create the VOMS proxy

UserCert Path of the generated VOMS proxy

CA Path to CA certificates directory

AuthType Authentication method, x509 only supported

Owner Optional. Used by the VENUS-C Job Manager (PMES)

	

	

JobNameTag

	
 	

Table	
 5	
 -­‐	
 Configuration	
 of	
 the	
 <provider>.xml	
 templates	
 file	

Instance Multiple entries of resource templates.

Type Name of the resource template. It has to be the same name than in the previous
files

CPU Number of cores

Memory Size in GB of the available RAM

Disk Size in GB of the storage

Price Cost per hour of the instance

	

	

	

Please find more details on the COMPSs framework at

www.bsc.es/compss

