
Provenance with PyCOMPSs
(hands-on included)

Raül Sirvent

31/1/2024 BSC Training Course: Programming Distributed Computing Platforms with COMPSs

Outline

• Motivation and Background

• Design of Workflow Provenance recording

• Using Workflow Provenance with COMPSs

• Inspecting registered metadata

• Hands-on exercises

Motivation and Background

Motivation

• Large number of Scientific Workflows experiments
• Keep track of results - Governance

• Reproducibility crisis in scientific papers
• Conferences now request artifacts

• E.g. SC Reproducibility Initiative

• Provenance recording can help with both problems

©M. Baker, Nature, 2016

• Provenance: The chronology of the origin, development, ownership, location, and
changes to a system or system component and associated data
• Need to record metadata

• Our focus: Workflow Provenance (data + software)

4

Motivation

• Provenance is MORE than just Reproducibility
• Governance (availability, usability, consistency, …) (FAIR Workflows)

• Replicability (exchange inputs)

• Knowledge extraction (queries, mining)

• Traceability (validation/verification, visualisation)

• Our claim: desired features for Workflow Provenance registration
• Automatic: lower user burden

• Efficient: no overheads

• Scalable: large workflows (both tasks and data assets used)

5

Background: COMPSs

• Sequential programming, parallel execution

• General purpose programming language +
annotations/hints (identify tasks and directionality
of data)

• Builds a task graph at runtime (potential
concurrency)

• Tasks can be sequential, parallel (threaded or MPI)

• Offers to applications a shared memory illusion in
a distributed system (Big Data apps support)

• Support for persistent storage

• Agnostic of computing platform: enabled by the
runtime for clusters, clouds and container
managed clusters

• Advanced features: heterogeneous infrastructures, task constraints,
streamed data, task faults, task exceptions, checkpointing, elasticity

6

Background: Research Object Crate
• Package research data + metadata

• Evolution from:
• Research Object: describe digital and real-world resources
• DataCrate: aggregate data with metadata

• Lightweight format
• Both machines and humans can read it

• JSON Linked Data (JSON-LD)
• Vocabulary: Schema.org
• Structure:

• Root Data Entity

• Data Entities (files, directories)
• Contextual Entities (non-digital elements)

• Strong ecosystem, we use:
• ro-crate-py library
• WorkflowHub

1.1

7

Background: RO-Crate Profiles

• RO-Crate is very generic (wide scope)
• Profiles enable Interoperability

• Set of conventions, types and properties (MUST, SHOULD, …)

• Workflow RO-Crate profile
• MUST ComputationalWorkflow, mainEntity (Root Dataset)

• SHOULD WorkflowSketch

• Workflow Run RO-Crate profile collection (MUST CreateAction)
• Process Run Crate (set of tools)

• Workflow Run Crate (computational workflow)

• Provenance Run Crate (detailed computational workflow)

Simone Leo et al. “Recording provenance of workflow runs
with RO-Crate” arXiv preprint arXiv:2312.07852 (Dec 2023)

8

Design of Workflow
Provenance recording

Design Requirements

• Target HPC workflows (commonly large)

• Provenance representation format

• Simple but able to represent complex workflows

• Automatic provenance registration (no explicit annotations)

• Efficient provenance registration (avoid overheads at run time)

• Scale to large workflows (thousands of files and tasks)

+

+

10

COMPSs runtime modifications

dataprovenance.log

• Lightweight approach: record file
accesses, generate provenance later

3.3
lysozyme_in_water.py
App_Profile.json
file://s01r2b54-ib0/home/bsc19/bsc19057/DP_Test_3_demo/dataset/2hs9.pdb IN
file://s01r2b54-ib0/home/bsc19/bsc19057/DP_Test_3_demo/output/2hs9.gro OUT
file://s01r2b54-ib0/home/bsc19/bsc19057/DP_Test_3_demo/output/2hs9.top OUT
...

generate_COMPSs_RO-Crate.py

• Flags –p or --provenance trigger it after execution
• Can be manually invoked if provenance generation

time becomes an issue (i.e., extreme large workflows)

After application finishes…

COMPSs_RO-Crate_[uuid]/

ro-crate-info.yaml

ro-crate-py 0.9.0

• It’s the crate
• ro-crate-metadata.json
• Application source files, command

line arguments, workflow image
and profile

11

generate_COMPSs_RO-Crate.py features

• Detects and records COMPSs version used and the mainEntity
• Looks for alternatives, if not found

• Automatically detects overall inputs and outputs of the workflow
• Discards intermediate generated results as inputs

• Respects application source files sub-directory structure

• If data persistence, machine paths translated to crate paths
• Identifies common paths to correctly arrange files

• E.g. inputs/00/input_file.txt

• If no persistence: URIs to files are generated, size and modification date
of files are stored to record the file version

12

Using Workflow
Provenance with COMPSs

Steps to record and publish
Workflow Provenance in COMPSs

• Install ro-crate-py (if needed)

• Provide YAML information file

• Run with -p or --provenance
• The crate is generated (a sub-folder COMPSs_RO-Crate_[uuid]/)

• Publish it at WorkflowHub, using the crate

• Generate a DOI, cite your results in papers

14

Install ro-crate-py

• pip install rocrate

• pip install rocrate --user
• Typically, installs the library in ~/.local/

• pip install -t install_path rocrate
• Specify target directory

15

https://github.com/ResearchObject/ro-crate-py

https://github.com/ResearchObject/ro-crate-py

YAML information to be provided

• Non-automatically gathered info:
ro-crate-info.yaml

• Sections:
• COMPSs Workflow Information

• Authors

• Submitter

• Data persistence: True or False

• No inputs/outputs are provided,
automatically detected by the
provenance generation script

16

COMPSs Workflow Information:
 name: COMPSs Matrix Multiplication
 description: Blocks as hypermatrix
 license: Apache-2.0
 sources: [src/, ~/java/matmul/xml/,

~/java/matmul/pom.xml, Readme]
 data_persistence: True
Authors:
 - name: Rosa M. Badia
 e-mail: Rosa.M.Badia@bsc.es
 orcid: https://orcid.org/0000-0003-2941-5499
 organisation_name: Barcelona Supercomputing Center
 ror: https://ror.org/05sd8tv96
Submitter:
 name: Raül Sirvent
 e-mail: Raul.Sirvent@bsc.es
 orcid: https://orcid.org/0000-0003-0606-2512
 organisation_name: Barcelona Supercomputing Center
 ror: https://ror.org/05sd8tv96

Run your COMPSs application

• runcompss -p

• enqueue_compss -p

• pycompss run -p

• Either -p or --provenance

17

• Post-process automatically triggered after the
end of the application

• Log and time statistics are provided
• grep PROVENANCE

• If provenance generation fails for any reason:
• Still possible to invoke it manually (commands

provided in the output log)

...
PROVENANCE | RO-Crate writing to disk TIME: 0.01987314224243164 s
PROVENANCE | Workflow Provenance generation TOTAL EXECUTION TIME: 0.04113888740539551 s
PROVENANCE | COMPSs Workflow Provenance successfully generated in sub-folder:
 COMPSs_RO-Crate_d64966ac-fe34-463a-88fc-f97047c21a99/
PROVENANCE | ENDED WORKFLOW PROVENANCE SCRIPT

The Crate (resulting folder)

• application_sources/

• dataset/

• complete_graph.svg

• App_Profile.json

• compss_submission_command_line.txt

• ro-crate-metadata.json

18

|-- App_Profile.json
|-- application_sources
| |-- Readme
| |-- pom.xml
| |-- src
| | `-- main
| | `-- java
| | `-- matmul
| | |-- arrays
| | | |-- …
| | | `-- Matmul.java
| | |-- files
| | | |-- Block.class
| | | |-- Block.java
| | | |-- Matmul.class
| | | |-- Matmul.java
| | | |-- MatmulImpl.class
| | | |-- MatmulImpl.java
| | | |-- MatmulItf.class
| | | `-- MatmulItf.java
| | `-- objects
| | |-- …
| | `-- Matmul.java
| `-- xml
| |-- project.xml
| `-- resources.xml
|-- complete_graph.svg
|-- compss_submission_command_line.txt
|-- dataset
| |-- …
| `-- C.1.1
|-- ro-crate-info.yaml
`-- ro-crate-metadata.json

10 directories, 41 files

Publish your results with WorkflowHub

• zip –r crate.zip COMPSs_RO-Crate_[uuid]/

• Login to WorfklowHub

• Create -> Workflow
• Upload/Import Workflow RO-Crate tab -> Local file (crate.zip)

• Click Register

• Review automatically obtained information

• Select the visibility of your workflow in the Sharing tab (for both general
public, and for teams selected)

• Click Register again

Cite your results with WorkflowHub

• Freeze your workflow version
• Overview tab -> Citation box -> Freeze version

• Actions menu -> Freeze version

• Generate DOI
• IMPORTANT: make sure your version is final

• Citation box -> Generate a DOI

• Actions menu -> Generate a DOI

• Select Mint DOI

• The final generated DOI for the workflow results can be found in the Citation box

20

https://doi.org/10.48546/workflowhub.workflow.484.1

https://doi.org/10.48546/workflowhub.workflow.484.1

SC Conference Reproducibility Initiative

• Artifacts Available
• Artifacts used in the research (including data and code) are permanently archived in a

public repository that assigns a global identifier and guarantees persistence, and are
made available via standard open licenses that maximize artifact availability

• Artifacts Evaluated-Functional
• Documentation: Are the artifacts sufficiently documented to enable them to be exercised

by readers of the paper?
• Completeness: Do the submitted artifacts include all of the key components described in

the paper?
• Exercisability: Do the submitted artifacts include the scripts and data needed to run the

experiments described in the paper, and can the software be successfully executed?

• Results Replicated
• Reproduce Behavior: determine the equivalent or approximate behavior on available

hardware
• Reproduce the Central Results and Claims of the Paper

21

Inspecting registered
metadata

Inspecting registered metadata

23

"@id": "application_sources/matmul_files.py",
"@type": ["File", "SoftwareSourceCode", "ComputationalWorkflow"],
"contentSize": 1948,
"description": "Main file of the COMPSs workflow source files",
"encodingFormat": "text/plain",
"image": {"@id": "complete_graph.svg"},
"name": "matmul_files.py",
"programmingLanguage": {"@id": "#compss"}

"@id": "complete_graph.svg",
"@type": ["File", "ImageObject", "WorkflowSketch"],
"about": {"@id": "application_sources/matmul_files.py"},
"contentSize": 6681,
"description": "The graph diagram of the workflow, automatically generated by COMPSs runtime",
"encodingFormat": [[”image/svg+xml",{"@id": "https://www.nationalarchives.gov.uk/PRONOM/fmt/92"}]],
"name": "complete_graph.svg"

"@id": "#compss",
"@type": "ComputerLanguage",
"alternateName": "COMPSs",
"citation": "https://doi.org/10.1007/s10723-

013-9272-5",
"name": "COMPSs Programming Model",
"url": "http://compss.bsc.es/",
"version": "3.3"

Inspecting registered metadata

24

"@id": "compss_submission_command_line.txt",
"@type": "File",
"contentSize": 709,
"description": "COMPSs command line execution

command (runcompss), including flags and
parameters passed",

"encodingFormat": "text/plain",
"name": "compss_submission_command_line.txt"

"@id": "App_Profile.json",
"@type": "File",
"contentSize": 247,
"description": "COMPSs application Tasks profile",
"encodingFormat": ["application/json",{"@id":"https://www.nationalarchives.gov.uk/PRONOM/fmt/817"}],
"name": "App_Profile.json"

"@id":
"application_sources/matmul_tasks.py",

"@type": ["File", "SoftwareSourceCode"]
"contentSize": 1549,
"description": "Auxiliary File",
"encodingFormat": "text/plain",
"name": "matmul_tasks.py"

Auxiliary Files
Command line arguments

COMPSs Task Profiling

Inspecting registered metadata

25

"@id": "file://s02r2b26-ib0/home/bsc19/bsc19057/DP_Test_3_demo/config/energy.selection"

Hostname Location path in hostname

"@id": "dataset/A.0.0",
"@type": "File",
"contentSize": 16,
"dateModified": "2023-09-07T09:20:20",
"name": "A.0.0",
"sdDatePublished": "2023-09-07T09:20:27+00:00"

Persistent Data

"@id": "file://s07r1b33-ib0/home/bsc19/bsc19057/DP_Test_3_demo/dataset/133l.pdb",
"@type": "File",
"contentSize": 116154,
"dateModified": "2022-04-20T13:20:58",
"name": ”133l.pdb",
"sdDatePublished": "2022-10-18T08:03:08+00:00"

Non-Persistent Data

Inspecting registered metadata

26

"@id": "#COMPSs_Workflow_Run_Crate_marenostrum4_SLURM_JOB_ID_30132875",
"@type": "CreateAction",
"actionStatus": {"@id": "http://schema.org/CompletedActionStatus"},
"agent": {"@id": "https://orcid.org/0000-0003-0606-2512"},
"description": "Linux s01r2b48 4.4.59-92.20-default #1 SMP Wed May 31 14:05:24 UTC 2017 (8cd473d)

x86_64 x86_64 x86_64 GNU/Linux SLURM_JOB_NAME=matmul-DP COMPSS_PYTHON_VERSION=3.9.10
SLURM_JOB_QOS=debug SLURM_MEM_PER_CPU=1880 COMPSS_BINDINGS_DEBUG=1 SLURM_JOB_ID=30132875
SLURM_JOB_USER=bsc19057 COMPSS_HOME=/apps/COMPSs/3.2/ SLURM_JOB_UID=2952
SLURM_SUBMIT_DIR=/gpfs/home/bsc19/bsc19057/COMPSs-DP SLURM_JOB_NODELIST=s01r2b48
SLURM_JOB_GID=2950 SLURM_JOB_CPUS_PER_NODE=48 COMPSS_MPIRUN_TYPE=impi SLURM_SUBMIT_HOST=login3
SLURM_JOB_PARTITION=main SLURM_JOB_ACCOUNT=bsc19 SLURM_JOB_NUM_NODES=1
COMPSS_MASTER_NODE=s01r2b48 COMPSS_WORKER_NODES=",

"endTime": "2023-09-07T09:46:26+00:00",
"instrument": {"@id": "application_sources/matmul_files.py"},
"name": "COMPSs matmul_files.py execution at marenostrum4 with JOB_ID 30132875",

CreateAction

Inspecting registered metadata

27

"object": [{"@id": "dataset/A.0.0"}, {"@id": "dataset/A.0.1"}, {"@id": "dataset/A.1.0"},
{"@id": "dataset/A.1.1"}, {"@id": "dataset/B.0.0"}, {"@id": "dataset/B.0.1"}, {"@id":
"dataset/B.1.0"}, {"@id": "dataset/B.1.1"}, {"@id": "dataset/C.0.0"}, {"@id":
"dataset/C.0.1"}, {"@id": "dataset/C.1.0"}, {"@id": "dataset/C.1.1"}],

"result": [{"@id": "dataset/C.0.0"}, {"@id": "dataset/C.0.1"}, {"@id": "dataset/C.1.0"},
{"@id": "dataset/C.1.1"}, {"@id": "./"}],

"subjectOf": ["https://userportal.bsc.es/"]

CreateAction

Conclusions

• FAIR HPC workflows combining COMPSs + RO-Crate + WorkflowHub
• WMS that use RO-Crate (Galaxy, Nextflow, Streamflow, Sapporo, Autosubmit)

• Paper* experiments show
• We provide automatic provenance registration (whenever possible)

• We are efficient (no run time overhead appreciated)

• We can scale and deal with large workflows (shown by use cases)

• Future Work

• Integration with: WfExS, ROHub (RO-Crate)

• Automatic reproducibility with the PyCOMPSs CLI

• Governance and Knowledge extraction

28

*Raül Sirvent et al. “Automatic, Efficient and Scalable Provenance Registration for FAIR HPC Workflows” In:
2022 IEEE/ACM Workshop on Workflows in Support of Large-Scale Science (WORKS). IEEE, 2022. p. 1-9.

Hands-on Exercises

Preliminary steps
• Find help in the Manual:

• COMPSs ReadTheDocs -> Tools -> Workflow Provenance

• Create your WorkflowHub account
• Open https://workflowhub.eu/
• Click “Register”

• “Log in using GitHub” or
• Register with your e-mail

• Mandatory: First name, Last name, e-mail. Recommended: ORCID
• Confirm registration with received e-mail

• Join “COMPSs Tutorials” team (“eFlows4HPC” Space)
• “Join a Team”

• Search for ”COMPSs Tutorials”
• Organization:

• Search for your institution not only by acronym, also with full words
• Can try also: Browse -> Organizations -> Country (filter)
• If not found: Create -> Organization

• List of commands used in the Exercises:
/apps/COMPSs/TUTORIALS/2024_BSC_TRAINING_COMPSS_MN4/PROVENANCE_COMMANDS.txt

30

https://workflowhub.eu/

Exercise 1: Publish a Workflow Run

• Choose a COMPSs example from the ones you have previously run in the
Cluster Hands-on session
• Easy: Lysozyme in Water (any version) (mandatory dataset_small/)

• Medium: Cholesky (can play with SIZE and BSIZE), K-means, Clustering
Comparison

• Hard: Wordcount (both reduce and merge)

• Create/edit ro-crate-info.yaml
• cp /apps/COMPSs/TUTORIALS/2024_BSC_TRAINING_COMPSS_MN4/ro-crate-

info.yaml .

• Establish yourself as ‘Submitter’
• If you don’t have an ORCID, just remove the ‘Submitter’ section, the Author will be

considered the Submitter

31

Exercise 1: Publish a Workflow Run

32

COMPSs Workflow Information:
name: Lysozyme in water sample

 description: Lysozyme in water sample COMPSs application
 license: Apache-2.0
 sources: [src/, launch.sh]
 data_persistence: True
Authors:
 - name: Rosa M. Badia
 e-mail: Rosa.M.Badia@bsc.es
 orcid: https://orcid.org/0000-0003-2941-5499
 organisation_name: Barcelona Supercomputing Center
 ror: https://ror.org/05sd8tv96
Submitter:
 name: Raül Sirvent
 e-mail: Raul.Sirvent@bsc.es
 orcid: https://orcid.org/0000-0003-0606-2512
 organisation_name: Barcelona Supercomputing Center
 ror: https://ror.org/05sd8tv96

• ro-crate-info.yaml

Minimal information

Odd usernames: True
Even usernames: False

Hint for Wordcount: look for
the optional parameters of
ro-crate-info.yaml in the
manual

Exercise 1: Publish a Workflow Run
• Edit launch.sh script: add “--provenance” option

• Submit: Example ./launch.sh 2 10 false $(pwd)/config/ $(pwd)/dataset_small/
$(pwd)/output/
• Change number of nodes, or other parameters

• Lysozyme in water: launch.sh, launch_full.sh, launch_full_no_mpi.sh or launch_full_singularity.sh
• Cholesky: SIZE, BSIZE
• Wordcount: launch.sh or launch_merge.sh

• Check time and result of provenance generation (compss_XXXX.out)
• What was the longest time during generation?

• Zip and upload RO-Crate
• zip –r my_app_crate.zip COMPSs_RO-Crate_XXX/

• Copy the file to your laptop. Run, from your laptop:
• scp nct01XXX@mn3.bsc.es:~/my_app_folder/my_app_crate.zip ~/Desktop/

• Go to WorkflowHub -> Contribute
• Upload/Import Workflow RO-Crate -> Select local file
• Briefly inspect imported metadata
• Select Team, check Sharing permissions, click Register

33

Exercise 1: Publish a Workflow Run

• DOI generation and reference (DON’T DO THIS NOW!!!!!!)
• Freeze version

• Generate a DOI

• Share the obtained DOI (e.g. use it as a reference in a paper)

• Example: ROM Workflow DOI generated live

34

Exercise 2: Inspect a previous published execution
• Find your own published workflow

• My Items -> Workflows

• Can you understand the metadata (ro-crate-metadata.json)? Ask, if not
• Identify the 3 main parts of the JSON: Root Data Entity, Data Entities, Contextual Entities

• ro-crate-metadata.json interesting keywords: mainEntity, ComputationalWorkflow, WorkflowSketch,
#compss, CreateAction (object, result)

• Observe the CreateAction in detail

• Questionnaire:
• Who ran this code? Where? When? With which COMPSs version?

• What is the name of the main application source file?

• What were the inputs and outputs used or generated in this workflow run?

• Can you say how many cluster nodes were used for the run? (Hint: 3 locations)

• Where can you find detailed profiling of the application? (Hint: 2 locations)

• Are the data assets included in the package?

• What was the command used to run this workflow? What were the parameters passed to the application?

• Navigate the workflow diagram

35

Exercise 2 (extra): Inspect a previous published execution
• Browse for other COMPSs Workflows at WorkflowHub

• Browse -> Workflows
• Workflow type: filter by “COMPSs”
• Team: filter by “COMPSs Tutorials” (or don’t)

• Inspect the metadata (keywords: mainEntity, ComputationalWorkflow,
WorkflowSketch, #compss, CreateAction (object, result))

• Questionnaire:
• Who ran this code? Where? When? With which COMPSs version?
• What is the name of the main application source file?
• What were the inputs and outputs used or generated in this workflow run?
• Can you say how many cluster nodes were used for the run? (Hint: 3 locations)
• Where can you find detailed profiling of the application? (Hint: 2 locations)
• Are the data assets included in the package?
• What was the command used to run this workflow? What were the parameters passed to the

application?
• Navigate the workflow diagram

36

Exercise 3: Repeat Exercises 1 and 2 with
data_persistence flipped

• If your data_persistence was True, set it to False

• If it was False, set it to True

• Re-execute your application

• Publish your new run to WorkflowHub

• Compare the runs
• dataset/ folder???

• ro-crate-metadata.json -> check data assets
• Search for a specific file you know

• Or look for “CreateAction”

37

Exercise 4: Reproduce an execution from another
participant in the tutorial

• Browse for COMPSs Workflows at WorkflowHub
• Browse -> Workflows

• Workflow type: filter by “COMPSs”
• Team: filter by “COMPSs Tutorials”

• Select preferably one with data_persistence=True (i.e. has a dataset/ folder)

• Click the workflow, click “Download RO-Crate”

• Create a directory at the supercomputer
• mkdir ~/reproduced_app/

• Copy the file from your laptop to the supercomputer
• scp ~/Desktop/workflow-XXX-X.crate.zip

nct01XXX@mn3.bsc.es:~/reproduced_app/your_app_crate.zip

• At the supercomputer, in the ~/reproduced_app/ folder
• unzip workflow-XXX-X.crate.zip

38

Exercise 4: Reproduce an execution from another
participant in the tutorial

• Understand inputs/outputs location (ro-crate-metadata.json)
• Check CreateAction -> object and result

• Example with dataset/
• Inputs:

• dataset/lysozyme_in_water/config/

• dataset/lysozyme_in_water/dataset_small/

• Outputs:
• dataset/lysozyme_in_water/output/

• Example without dataset/
• Inputs:

• file://s02r1b59-ib0/home/nct01/nct00XXX/lysozyme_in_water/config/

• file://s02r1b59-ib0/home/nct01/nct00XXX/lysozyme_in_water/dataset_small/

• Outputs
• file://s02r1b59-ib0/home/nct01/nct00XXX/lysozyme_in_water/output/

• Check parameters used in the run (compss_submission_command_line.txt)
• Specifically, the num_nodes parameter

39

Exercise 4: Reproduce an execution from another
participant in the tutorial

• CREATE A NEW OUTPUT FOLDER (avoid overwriting the recorded one)
• cd application_sources/
• mkdir new_output/

• Resubmit the application with the correct paths:
• chmod ugo+x launch.sh
• Provenance recording can be deactivated for this run (remove --provenance)
• Persistence example:

• ./launch.sh 2 10 false ../dataset/lysozyme_in_water/config/ ../dataset/lysozyme_in_water/dataset_small/
new_output/

• Non-persistence example:
• ./launch.sh 2 10 false /home/nct01/nct00XXX/lysozyme_in_water/config/

/home/nct01/nct00XXX/lysozyme_in_water/dataset_small new_output/

• Compare results:
• diff new_output/ ../dataset/lysozyme_in_water/output/
• diff new_output/ /home/nct01/nct00XXX/lysozyme_in_water/output
• Are they identical? Why?

40

Thank you for
your attention

https://compss-doc.readthedocs.io/en/latest/Sections/05_Tools/04_Workflow_Provenance.html

Raul.Sirvent@bsc.es

https://compss-doc.readthedocs.io/en/latest/Sections/05_Tools/04_Workflow_Provenance.html

	Slide 1: Provenance with PyCOMPSs (hands-on included)
	Slide 2: Outline
	Slide 3
	Slide 4: Motivation
	Slide 5: Motivation
	Slide 6: Background: COMPSs
	Slide 7: Background: Research Object Crate
	Slide 8: Background: RO-Crate Profiles
	Slide 9
	Slide 10: Design Requirements
	Slide 11: COMPSs runtime modifications
	Slide 12: generate_COMPSs_RO-Crate.py features
	Slide 13
	Slide 14: Steps to record and publish Workflow Provenance in COMPSs
	Slide 15: Install ro-crate-py
	Slide 16: YAML information to be provided
	Slide 17: Run your COMPSs application
	Slide 18: The Crate (resulting folder)
	Slide 19: Publish your results with WorkflowHub
	Slide 20: Cite your results with WorkflowHub
	Slide 21: SC Conference Reproducibility Initiative
	Slide 22
	Slide 23: Inspecting registered metadata
	Slide 24: Inspecting registered metadata
	Slide 25: Inspecting registered metadata
	Slide 26: Inspecting registered metadata
	Slide 27: Inspecting registered metadata
	Slide 28: Conclusions
	Slide 29
	Slide 30: Preliminary steps
	Slide 31: Exercise 1: Publish a Workflow Run
	Slide 32: Exercise 1: Publish a Workflow Run
	Slide 33: Exercise 1: Publish a Workflow Run
	Slide 34: Exercise 1: Publish a Workflow Run
	Slide 35: Exercise 2: Inspect a previous published execution
	Slide 36: Exercise 2 (extra): Inspect a previous published execution
	Slide 37: Exercise 3: Repeat Exercises 1 and 2 with data_persistence flipped
	Slide 38: Exercise 4: Reproduce an execution from another participant in the tutorial
	Slide 39: Exercise 4: Reproduce an execution from another participant in the tutorial
	Slide 40: Exercise 4: Reproduce an execution from another participant in the tutorial
	Slide 42: Thank you for your attention

