

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Provenance with PyCOMPSs (hands-on included)

Raül Sirvent

31/1/2024

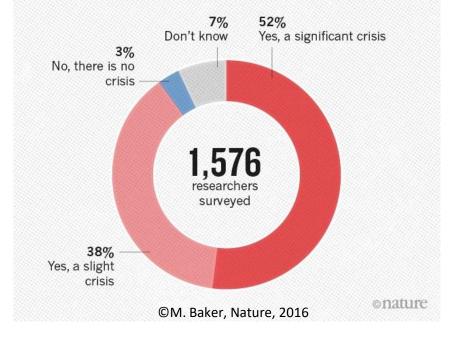
BSC Training Course: Programming Distributed Computing Platforms with COMPSs

- Motivation and Background
- Design of Workflow Provenance recording
- Using Workflow Provenance with COMPSs
- Inspecting registered metadata
- Hands-on exercises

Motivation and Background

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Motivation


IS THERE A REPRODUCIBILITY CRISIS?

- Keep track of results Governance
- **Reproducibility** crisis in scientific papers
 - Conferences now request artifacts
 - E.g. SC Reproducibility Initiative
- Provenance recording can help with both problems

- **Provenance:** The chronology of the origin, development, ownership, location, and changes to a system or system component and associated data
 - Need to record metadata
 - Our focus: Workflow Provenance (data + software)

Motivation

- Provenance is **MORE** than just Reproducibility
 - Governance (availability, usability, consistency, ...) (FAIR Workflows)
 - **Replicability** (exchange inputs)
 - Knowledge extraction (queries, mining)
 - **Traceability** (validation/verification, visualisation)
- Our claim: desired features for Workflow Provenance registration
 - Automatic: lower user burden
 - Efficient: no overheads
 - Scalable: large workflows (both tasks and data assets used)

Background: COMPSs

- Sequential programming, parallel execution
- General purpose programming language + annotations/hints (identify tasks and directionality of data)
- Builds a task graph at runtime (potential concurrency)
- Tasks can be sequential, parallel (threaded or MPI)
- Offers to applications a shared memory illusion in a distributed system (Big Data apps support)
- Support for **persistent storage**
- Agnostic of computing platform: enabled by the runtime for clusters, clouds and container managed clusters
- 1 @task() def word_count(block): 2 for block in data: 3 p_result = word_count(block) return res 4reduce_count(result, p_result) 5 @task(f_res=INOUT) result = compss_wait_on(result) def merge_count(f_res, p_res): (b) Main code example 8 (a) Task annotation example Infrastructure Task Dependecy Graph Annotated Cloud docke python code Python binding Tasks COMPSs **Resource Mgmt** Runtime Monitoring Files, **Task Execution** objects Task Scheduling Analysis Data Mgmt.
- Advanced features: heterogeneous infrastructures, task constraints, streamed data, task faults, task exceptions, checkpointing, elasticity

Background: Research Object Crate

- Package research data + metadata
- Evolution from:
 - Research Object: describe digital and real-world resources
 - DataCrate: aggregate data with metadata
- Lightweight format
 - Both machines and humans can read it
- JSON Linked Data (JSON-LD)
 - Vocabulary: Schema.org
 - Structure:
 - Root Data Entity
 - Data Entities (files, directories)
 - Contextual Entities (non-digital elements)
- Strong ecosystem, we use:
 - ro-crate-py library
 - WorkflowHub

Background: RO-Crate Profiles

- RO-Crate is very generic (wide scope)
 - Profiles enable Interoperability
 - Set of conventions, types and properties (MUST, SHOULD, ...)
- Workflow RO-Crate profile
 - MUST ComputationalWorkflow, mainEntity (Root Dataset)
 - SHOULD WorkflowSketch

Barcelona Supercomputing

- Workflow Run RO-Crate profile collection (MUST CreateAction)
 - Process Run Crate (set of tools)
 - Workflow Run Crate (computational workflow)
 - Provenance Run Crate (detailed computational workflow)

Workflow Run

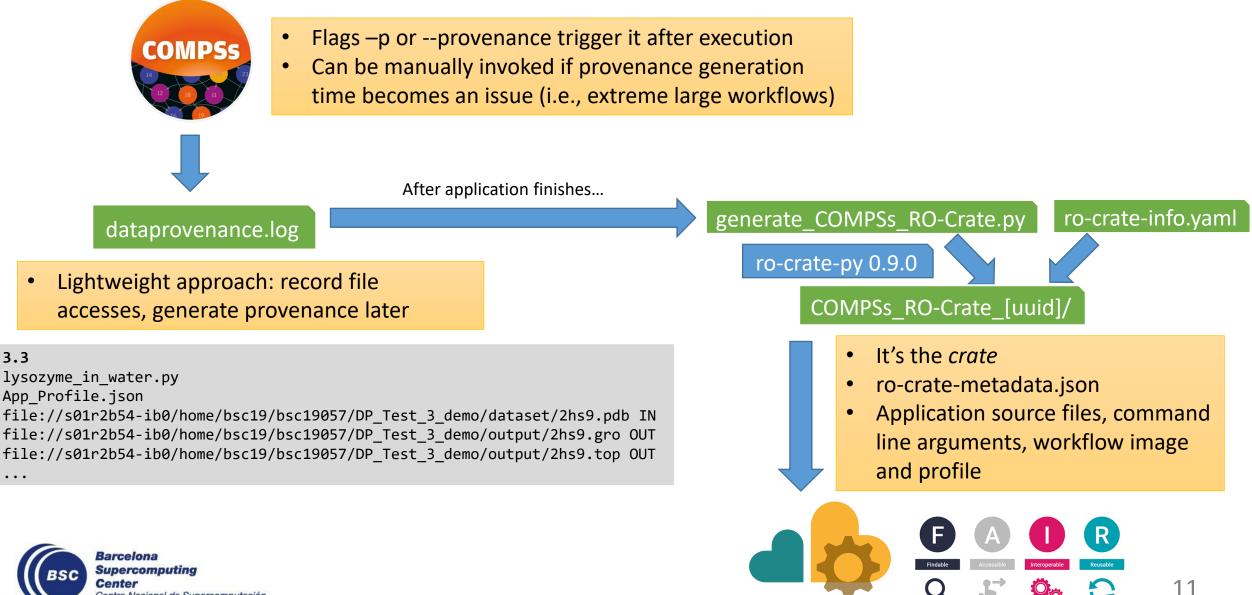
{
 RO-Crate

Design of Workflow Provenance recording

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Design Requirements

- Target HPC workflows (commonly large)
- Provenance representation format
 - Simple but able to represent complex workflows
- Automatic provenance registration (no explicit annotations)
- Efficient provenance registration (avoid overheads at run time)
- Scale to large workflows (thousands of files and tasks)



Barcelona Supercomputing Center Centro Nacional de Supercomputación

COMPSs runtime modifications

WorkflowHub

ntro Nacional de Supercomputación

3.3

. . .

generate_COMPSs_RO-Crate.py features

- Detects and records COMPSs version used and the mainEntity
 - Looks for alternatives, if not found
- Automatically detects overall **inputs** and **outputs** of the workflow
 - Discards intermediate generated results as inputs
- Respects application **source files** sub-directory structure
- If data persistence, machine paths translated to crate paths
 - Identifies **common paths** to correctly arrange files
 - E.g. inputs/00/input_file.txt
- If no persistence: **URIs** to files are generated, **size** and **modification** date of files are stored to record the file version

Using Workflow Provenance with COMPSs

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Steps to record and publish Workflow Provenance in COMPSs

- Install ro-crate-py (if needed)
- Provide YAML information file
- Run with -p or --provenance
 - The *crate* is generated (a sub-folder COMPSs_RO-Crate_[uuid]/)
- Publish it at WorkflowHub, using the crate
- Generate a DOI, cite your results in papers

Install ro-crate-py

- pip install rocrate
- pip install rocrate --user
 - Typically, installs the library in ~/.local/
- pip install -t install_path rocrate
 - Specify target directory

https://github.com/ResearchObject/ro-crate-py

YAML information to be provided

- Non-automatically gathered info: ro-crate-info.yaml
- Sections:
 - COMPSs Workflow Information
 - Authors
 - Submitter
- Data persistence: True or False
- No inputs/outputs are provided, automatically detected by the provenance generation script

```
COMPSs Workflow Information:
  name: COMPSs Matrix Multiplication
  description: Blocks as hypermatrix
  license: Apache-2.0
  sources: [src/, ~/java/matmul/xml/,
   ~/java/matmul/pom.xml, Readme]
  data persistence: True
Authors:
  - name: Rosa M. Badia
    e-mail: Rosa.M.Badia@bsc.es
    orcid: https://orcid.org/0000-0003-2941-5499
    organisation name: Barcelona Supercomputing Center
    ror: https://ror.org/05sd8tv96
Submitter:
  name: Raül Sirvent
  e-mail: Raul.Sirvent@bsc.es
  orcid: https://orcid.org/0000-0003-0606-2512
  organisation_name: Barcelona Supercomputing Center
  ror: https://ror.org/05sd8tv96
```


Run your COMPSs application

- runcompss -p
- enqueue_compss -p
- pycompss run -p
- Either -p or --provenance

- Post-process automatically triggered after the end of the application
- Log and time statistics are provided
 - grep PROVENANCE
- If provenance generation fails for any reason:
 - Still possible to invoke it manually (commands provided in the output log)

...
PROVENANCE | RO-Crate writing to disk TIME: 0.01987314224243164 s
PROVENANCE | Workflow Provenance generation TOTAL EXECUTION TIME: 0.04113888740539551 s
PROVENANCE | COMPSs Workflow Provenance successfully generated in sub-folder:
 COMPSs_RO-Crate_d64966ac-fe34-463a-88fc-f97047c21a99/
PROVENANCE | ENDED WORKFLOW PROVENANCE SCRIPT

The Crate (resulting folder)

- application_sources/
- dataset/
- complete_graph.svg
- App_Profile.json
- compss_submission_command_line.txt
- ro-crate-metadata.json


```
App Profile.json
  application sources
    -- Readme
       pom.xml
    -- src
        -- main
            · _ _
               java
                 -- matmul
                     -- arrays
                         -- ...
                         -- Matmul.java
                     -- files
                         -- Block.class
                         -- Block.java
                         -- Matmul.class
                         -- Matmul.java
                         -- MatmulImpl.class
                         -- MatmulImpl.java
                         -- MatmulItf.class
                         -- MatmulItf.java
                        objects
                         -- ...
                         -- Matmul.java
    -- xml
        -- project.xml
        -- resources.xml
-- complete graph.svg
 - compss submission command line.txt
 - dataset
    -- ...
   -- C.1.1
-- ro-crate-info.yaml
-- ro-crate-metadata.json
```

10 directories, 41 files

Publish your results with WorkflowHub

- **zip** –r crate.zip COMPSs_RO-Crate_[uuid]/
- Login to WorfklowHub
- Create -> Workflow
 - **Upload**/Import Workflow RO-Crate tab -> Local file (crate.zip)
 - Click Register
- Review automatically obtained information
- Select the visibility of your workflow in the Sharing tab (for both general public, and for teams selected)
- Click Register again

Cite your results with WorkflowHub

- Freeze your workflow version
 - Overview tab -> Citation box -> Freeze version
 - Actions menu -> Freeze version
- Generate DOI
 - **IMPORTANT:** make sure your version is final
 - Citation box -> Generate a DOI
 - Actions menu -> Generate a DOI
 - Select Mint DOI
- The final generated DOI for the workflow results can be found in the Citation box

https://doi.org/10.48546/workflowhub.workflow.484.1

SC Conference Reproducibility Initiative

- Artifacts Available 🍸
 - Artifacts used in the research (including data and code) are permanently archived in a public repository that assigns a global identifier and guarantees persistence, and are made available via standard open licenses that maximize artifact availability

Artifacts Evaluated-Functional

- Documentation: Are the artifacts sufficiently documented to enable them to be exercised by readers of the paper?
- Completeness: Do the submitted artifacts include all of the key components described in the paper?
- Exercisability: Do the submitted artifacts include the scripts and data needed to run the experiments described in the paper, and can the software be successfully executed?
- Results Replicated
 - Reproduce Behavior: determine the equivalent or approximate behavior on available hardware
 - Reproduce the Central Results and Claims of the Paper

Barcelona Supercomputing Center Centro Nacional de Supercomputación

```
"@id": "application_sources/matmul_files.py",
"@type": ["File", "SoftwareSourceCode", "ComputationalWorkflow"],
"contentSize": 1948,
"description": "Main file of the COMPSs workflow source files",
"encodingFormat": "text/plain",
"image": {"@id": "complete_graph.svg"},
"name": "matmul_files.py",
"programmingLanguage": {"@id": "#compss"}
```


"@id": "#compss", "@type": "ComputerLanguage", "alternateName": "COMPSs", "citation": "https://doi.org/10.1007/s10723-013-9272-5", "name": "COMPSs Programming Model", "url": "http://compss.bsc.es/", "version": "3.3"

"@id": "complete_graph.svg",
"@type": ["File", "ImageObject", "WorkflowSketch"],
"about": {"@id": "application_sources/matmul_files.py"},
"contentSize": 6681,
"description": "The graph diagram of the workflow, automatically generated by COMPSs runtime",
"encodingFormat": [["image/svg+xml",{"@id": "https://www.nationalarchives.gov.uk/PRONOM/fmt/92"}]],
"name": "complete_graph.svg"

Auxiliary Files

```
"@id":
    "application_sources/matmul_tasks.py",
"@type": ["File", "SoftwareSourceCode"]
"contentSize": 1549,
"description": "Auxiliary File",
"encodingFormat": "text/plain",
"name": "matmul_tasks.py"
```

Command line arguments

```
"@id": "compss_submission_command_line.txt",
"@type": "File",
"contentSize": 709,
"description": "COMPSs command line execution
    command (runcompss), including flags and
    parameters passed",
"encodingFormat": "text/plain",
"name": "compss_submission_command_line.txt"
```

COMPSs Task Profiling

```
"@id": "App_Profile.json",
"@type": "File",
"contentSize": 247,
"description": "COMPSs application Tasks profile",
"encodingFormat": ["application/json",{"@id":"https://www.nationalarchives.gov.uk/PRONOM/fmt/817"}],
"name": "App_Profile.json"
```


Persistent Data

```
"@id": "dataset/A.0.0",
"@type": "File",
"contentSize": 16,
"dateModified": "2023-09-07T09:20:20",
"name": "A.0.0",
"sdDatePublished": "2023-09-07T09:20:27+00:00"
```

Non-Persistent Data

```
"@id": "file://s07r1b33-ib0/home/bsc19/bsc19057/DP_Test_3_demo/dataset/1331.pdb",
"@type": "File",
"contentSize": 116154,
"dateModified": "2022-04-20T13:20:58",
"name": "1331.pdb",
"sdDatePublished": "2022-10-18T08:03:08+00:00"
```

"@id": "file://s02r2b26-ib0/home/bsc19/bsc19057/DP_Test_3_demo/config/energy.selection"

Hostname

Location path in hostname

CreateAction

Workflow Run {⁽)</sub> RO-Crate

"@id": "#COMPSs_Workflow_Run_Crate_marenostrum4_SLURM_JOB_ID_30132875", "@type": "CreateAction", "actionStatus": {"@id": "http://schema.org/CompletedActionStatus"}, "agent": {"@id": "https://orcid.org/0000-0003-0606-2512"}, "description": "Linux s01r2b48 4.4.59-92.20-default #1 SMP Wed May 31 14:05:24 UTC 2017 (8cd473d) x86_64 x86_64 x86_64 cmU/Linux SLURM_JOB_NAME=matmul-DP COMPSS PYTHON_VERSION=3.9.10 SLURM_JOB_QOS=debug_SLURM_MEM_PER_CPU=1880 COMPSS_BINDINGS_DEBUG=1 SLURM_JOB_ID=30132875 SLURM_JOB_USER=bsc19057 COMPSS_HOME=/apps/COMPSs/3.2/ SLURM_JOB_UID=2952 SLURM_SUBMIT_DIR=/gpfs/home/bsc19/bsc19057/COMPSs-DP_SLURM_JOB_NODELIST=s01r2b48 SLURM_JOB_GID=2950 SLURM_JOB_CPUS_PER_NODE=48 COMPSS_MPIRUN_TYPE=impi_SLURM_SUBMIT_HOST=login3 SLURM_JOB_PARTITION=main_SLURM_JOB_ACCOUNT=bsc19 SLURM_JOB_NUM_NODES=1 COMPSS_MASTER_NODE=s01r2b48 COMPSS_WORKER_NODES=", "endTime": "2023-09-07T09:46:26+00:00", "instrument": {"@id": "application_sources/matmul_files.py"}, "name": "COMPSs_matmul files.py execution at marenostrum4 with JOB_ID_30132875",

CreateAction

"subjectOf": ["https://userportal.bsc.es/"]

Conclusions

- FAIR HPC workflows combining COMPSs + RO-Crate + WorkflowHub
 - WMS that use RO-Crate (Galaxy, Nextflow, Streamflow, Sapporo, Autosubmit)
- Paper* experiments show
 - We provide automatic provenance registration (whenever possible)
 - We are **efficient** (no run time overhead appreciated)
 - We can scale and deal with large workflows (shown by use cases)
- Future Work
 - Integration with: WfExS, ROHub (RO-Crate)
 - Automatic reproducibility with the PyCOMPSs CLI
 - Governance and Knowledge extraction

*Raül Sirvent et al. "Automatic, Efficient and Scalable Provenance Registration for FAIR HPC Workflows" In: 2022 IEEE/ACM Workshop on Workflows in Support of Large-Scale Science (WORKS). IEEE, 2022. p. 1-9.

Hands-on Exercises

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Preliminary steps

- Find help in the Manual:
 - COMPSs ReadTheDocs -> Tools -> Workflow Provenance
- Create your WorkflowHub account
 - Open https://workflowhub.eu/
 - Click "Register"
 - "Log in using GitHub" or
 - Register with your e-mail
 - Mandatory: First name, Last name, e-mail. Recommended: ORCID
 - Confirm registration with received e-mail
- Join "COMPSs Tutorials" team ("eFlows4HPC" Space)
 - "Join a Team"
 - Search for "COMPSs Tutorials"
 - Organization:
 - Search for your institution not only by acronym, also with full words
 - Can try also: Browse -> Organizations -> Country (filter)
 - If not found: Create -> Organization
- List of commands used in the Exercises: /apps/COMPSs/TUTORIALS/2024_BSC_TRAINING_COMPSS_MN4/PROVENANCE_COMMANDS.txt

- Choose a COMPSs example from the ones you have previously run in the Cluster Hands-on session
 - Easy: Lysozyme in Water (any version) (mandatory dataset_small/)
 - Medium: Cholesky (can play with SIZE and BSIZE), K-means, Clustering Comparison
 - Hard: Wordcount (both reduce and merge)
- Create/edit ro-crate-info.yaml
 - cp /apps/COMPSs/TUTORIALS/2024_BSC_TRAINING_COMPSS_MN4/ro-crateinfo.yaml .
 - Establish yourself as 'Submitter'
 - If you don't have an ORCID, just remove the 'Submitter' section, the Author will be considered the Submitter

• ro-crate-info.yaml

COMPSs Workflow Information:

```
name: Lysozyme in water sample
description: Lysozyme in water sample COMPSs application
license: Apache-2.0
sources: [src/, launch.sh]
data_persistence: True
utbons:
```

Authors:

- name: Rosa M. Badia e-mail: Rosa.M.Badia@bsc.es orcid: https://orcid.org/0000-0003-2941-5499 organisation_name: Barcelona Supercomputing Center ror: https://ror.org/05sd8tv96

Submitter:

name: Raül Sirvent e-mail: Raul.Sirvent@bsc.es orcid: https://orcid.org/0000-0003-0606-2512 organisation_name: Barcelona Supercomputing Center ror: https://ror.org/05sd8tv96

Minimal information

Odd usernames: True Even usernames: False

Hint for Wordcount: look for the optional parameters of ro-crate-info.yaml in the manual

- Edit launch.sh script: add "--provenance" option
- Submit: Example ./launch.sh 2 10 false \$(pwd)/config/ \$(pwd)/dataset_small/ \$(pwd)/output/
 - Change number of nodes, or other parameters
 - Lysozyme in water: launch.sh, launch_full.sh, launch_full_no_mpi.sh or launch_full_singularity.sh
 - Cholesky: SIZE, BSIZE
 - Wordcount: launch.sh or launch_merge.sh
- Check time and result of provenance generation (compss_XXXX.out)
 - What was the longest time during generation?
- Zip and upload RO-Crate
 - zip –r my_app_crate.zip COMPSs_RO-Crate_XXX/
- Copy the file to your laptop. Run, from your laptop:
 - scp nct01XXX@mn3.bsc.es:~/my_app_folder/my_app_crate.zip ~/Desktop/
- Go to WorkflowHub -> Contribute
 - Upload/Import Workflow RO-Crate -> Select local file
 - Briefly inspect imported metadata
 - Select Team, check Sharing permissions, click Register

- DOI generation and reference (DON'T DO THIS NOW!!!!!!)
 - Freeze version
 - Generate a DOI
 - Share the obtained DOI (e.g. use it as a reference in a paper)
- Example: ROM Workflow DOI generated live

Exercise 2: Inspect a previous published execution

- Find your own published workflow
 - My Items -> Workflows
- Can you understand the metadata (ro-crate-metadata.json)? Ask, if not
 - Identify the 3 main parts of the JSON: Root Data Entity, Data Entities, Contextual Entities
 - ro-crate-metadata.json interesting keywords: mainEntity, ComputationalWorkflow, WorkflowSketch, #compss, CreateAction (object, result)
 - Observe the CreateAction in detail
- Questionnaire:
 - Who ran this code? Where? When? With which COMPSs version?
 - What is the name of the main application source file?
 - What were the inputs and outputs used or generated in this workflow run?
 - Can you say how many cluster nodes were used for the run? (Hint: 3 locations)
 - Where can you find detailed profiling of the application? (Hint: 2 locations)
 - Are the data assets included in the package?
 - What was the command used to run this workflow? What were the parameters passed to the application?
 - Navigate the workflow diagram

Exercise 2 (extra): Inspect a previous published execution

- Browse for other COMPSs Workflows at WorkflowHub
 - Browse -> Workflows
 - Workflow type: filter by "COMPSs"
 - Team: filter by "COMPSs Tutorials" (or don't)
- Inspect the metadata (keywords: mainEntity, ComputationalWorkflow, WorkflowSketch, #compss, CreateAction (object, result))
- Questionnaire:
 - Who ran this code? Where? When? With which COMPSs version?
 - What is the name of the main application source file?
 - What were the inputs and outputs used or generated in this workflow run?
 - Can you say how many cluster nodes were used for the run? (Hint: 3 locations)
 - Where can you find detailed profiling of the application? (Hint: 2 locations)
 - Are the data assets included in the package?
 - What was the command used to run this workflow? What were the parameters passed to the application?
 - Navigate the workflow diagram

Exercise 3: Repeat Exercises 1 and 2 with data_persistence flipped

- If your data_persistence was True, set it to False
- If it was False, set it to True
- Re-execute your application
- Publish your new run to WorkflowHub
- Compare the runs
 - dataset/ folder???
 - ro-crate-metadata.json -> check data assets
 - Search for a specific file you know
 - Or look for "CreateAction"

Exercise 4: Reproduce an execution from another participant in the tutorial

- Browse for COMPSs Workflows at WorkflowHub
 - Browse -> Workflows
 - Workflow type: filter by "COMPSs"
 - Team: filter by "COMPSs Tutorials"
 - Select preferably one with data_persistence=True (i.e. has a dataset/ folder)
- Click the workflow, click "Download RO-Crate"
- Create a directory at the supercomputer
 - mkdir ~/reproduced_app/
- Copy the file from your laptop to the supercomputer
 - scp ~/Desktop/workflow-XXX-X.crate.zip nct01XXX@mn3.bsc.es:~/reproduced_app/your_app_crate.zip
- At the supercomputer, in the ~/reproduced_app/ folder
 - unzip workflow-XXX-X.crate.zip

Exercise 4: Reproduce an execution from another participant in the tutorial

- Understand inputs/outputs location (ro-crate-metadata.json)
 - Check CreateAction -> object and result
- Example with dataset/
 - Inputs:
 - dataset/lysozyme_in_water/config/
 - dataset/lysozyme_in_water/dataset_small/
 - Outputs:
 - dataset/lysozyme_in_water/output/
- Example without dataset/
 - Inputs:
 - file://s02r1b59-ib0/home/nct01/nct00XXX/lysozyme_in_water/config/
 - file://s02r1b59-ib0/home/nct01/nct00XXX/lysozyme_in_water/dataset_small/
 - Outputs
 - file://s02r1b59-ib0/home/nct01/nct00XXX/lysozyme_in_water/output/
- Check parameters used in the run (compss_submission_command_line.txt)
 - Specifically, the num_nodes parameter

Exercise 4: Reproduce an execution from another participant in the tutorial

• CREATE A NEW OUTPUT FOLDER (avoid overwriting the recorded one)

- cd application_sources/
- mkdir new_output/
- Resubmit the application with the correct paths:
 - chmod ugo+x launch.sh
 - Provenance recording can be deactivated for this run (remove --provenance)
 - Persistence example:
 - ./launch.sh 2 10 false ../dataset/lysozyme_in_water/config/ ../dataset/lysozyme_in_water/dataset_small/ new_output/
 - Non-persistence example:
 - ./launch.sh 2 10 false /home/nct01/nct00XXX/lysozyme_in_water/config/ /home/nct01/nct00XXX/lysozyme_in_water/dataset_small new_output/
- Compare results:
 - diff new_output/ ../dataset/lysozyme_in_water/output/
 - diff new_output/ /home/nct01/nct00XXX/lysozyme_in_water/output
 - Are they identical? Why?

DT-//-GEO

GENCIA Statal Di

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Thank you for your attention

https://compss-doc.readthedocs.io/en/latest/Sections/05 Tools/04 Workflow Provenance.html

Raul.Sirvent@bsc.es