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Motivation and Background



Motivation

• Large number of Scientific Workflows experiments
• Keep track of results - Governance

• Reproducibility crisis in scientific papers
• Conferences now request artifacts

• E.g. SC Reproducibility Initiative

• Provenance recording can help with both problems

©M. Baker, Nature, 2016

• Provenance: The chronology of the origin, development, ownership, location, and 
changes to a system or system component and associated data
• Need to record metadata

• Our focus: Workflow Provenance (data + software)
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Motivation

• Provenance is MORE than just Reproducibility
• Governance (availability, usability, consistency, …) (FAIR Workflows)

• Replicability (exchange inputs)

• Knowledge extraction (queries, mining)

• Traceability (validation/verification, visualisation)

• Our claim: desired features for Workflow Provenance registration
• Automatic: lower user burden

• Efficient: no overheads

• Scalable: large workflows (both tasks and data assets used)
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Background: COMPSs

• Sequential programming, parallel execution

• General purpose programming language + 
annotations/hints (identify tasks and directionality 
of data)

• Builds a task graph at runtime (potential 
concurrency)

• Tasks can be sequential, parallel (threaded or MPI) 

• Offers to applications a shared memory illusion in 
a distributed system (Big Data apps support)

• Support for persistent storage

• Agnostic of computing platform: enabled by the 
runtime for clusters, clouds and container
managed clusters

• Advanced features: heterogeneous infrastructures, task constraints, 
streamed data, task faults, task exceptions, checkpointing, elasticity
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Background: Research Object Crate
• Package research data + metadata

• Evolution from:
• Research Object: describe digital and real-world resources
• DataCrate: aggregate data with metadata

• Lightweight format
• Both machines and humans can read it

• JSON Linked Data (JSON-LD)
• Vocabulary: Schema.org
• Structure:

• Root Data Entity

• Data Entities (files, directories)
• Contextual Entities (non-digital elements)

• Strong ecosystem, we use:
• ro-crate-py library
• WorkflowHub

1.1
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Background: RO-Crate Profiles

• RO-Crate is very generic (wide scope)
• Profiles enable Interoperability

• Set of conventions, types and properties (MUST, SHOULD, …)

• Workflow RO-Crate profile
• MUST ComputationalWorkflow, mainEntity (Root Dataset)

• SHOULD WorkflowSketch

• Workflow Run RO-Crate profile collection (MUST CreateAction)
• Process Run Crate (set of tools)

• Workflow Run Crate (computational workflow)

• Provenance Run Crate (detailed computational workflow)

Simone Leo et al. “Recording provenance of workflow runs 
with RO-Crate” arXiv preprint arXiv:2312.07852 (Dec 2023)
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Design of Workflow 
Provenance recording



Design Requirements

• Target HPC workflows (commonly large)

• Provenance representation format

• Simple but able to represent complex workflows

• Automatic provenance registration (no explicit annotations)

• Efficient provenance registration (avoid overheads at run time)

• Scale to large workflows (thousands of files and tasks)

+
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COMPSs runtime modifications

dataprovenance.log

• Lightweight approach: record file 
accesses, generate provenance later

3.3
lysozyme_in_water.py
App_Profile.json
file://s01r2b54-ib0/home/bsc19/bsc19057/DP_Test_3_demo/dataset/2hs9.pdb IN
file://s01r2b54-ib0/home/bsc19/bsc19057/DP_Test_3_demo/output/2hs9.gro OUT
file://s01r2b54-ib0/home/bsc19/bsc19057/DP_Test_3_demo/output/2hs9.top OUT
...

generate_COMPSs_RO-Crate.py

• Flags –p or --provenance trigger it after execution
• Can be manually invoked if provenance generation 

time becomes an issue (i.e., extreme large workflows)

After application finishes…

COMPSs_RO-Crate_[uuid]/

ro-crate-info.yaml

ro-crate-py 0.9.0

• It’s the crate
• ro-crate-metadata.json
• Application source files, command 

line arguments, workflow image 
and profile
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generate_COMPSs_RO-Crate.py features

• Detects and records COMPSs version used and the mainEntity
• Looks for alternatives, if not found

• Automatically detects overall inputs and outputs of the workflow
• Discards intermediate generated results as inputs

• Respects application source files sub-directory structure

• If data persistence, machine paths translated to crate paths
• Identifies common paths to correctly arrange files

• E.g. inputs/00/input_file.txt

• If no persistence: URIs to files are generated, size and modification date 
of files are stored to record the file version
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Using Workflow 
Provenance with COMPSs



Steps to record and publish 
Workflow Provenance in COMPSs

• Install ro-crate-py (if needed)

• Provide YAML information file

• Run with -p or --provenance
• The crate is generated (a sub-folder COMPSs_RO-Crate_[uuid]/)

• Publish it at WorkflowHub, using the crate

• Generate a DOI, cite your results in papers
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Install ro-crate-py

• pip install rocrate

• pip install rocrate --user
• Typically, installs the library in ~/.local/

• pip install -t install_path rocrate
• Specify target directory
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https://github.com/ResearchObject/ro-crate-py

https://github.com/ResearchObject/ro-crate-py


YAML information to be provided

• Non-automatically gathered info: 
ro-crate-info.yaml

• Sections:
• COMPSs Workflow Information

• Authors

• Submitter

• Data persistence: True or False

• No inputs/outputs are provided, 
automatically detected by the 
provenance generation script
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COMPSs Workflow Information:
  name: COMPSs Matrix Multiplication
  description: Blocks as hypermatrix
  license: Apache-2.0
  sources: [src/, ~/java/matmul/xml/, 

~/java/matmul/pom.xml, Readme]
  data_persistence: True
Authors:
  - name: Rosa M. Badia
    e-mail: Rosa.M.Badia@bsc.es
    orcid: https://orcid.org/0000-0003-2941-5499
    organisation_name: Barcelona Supercomputing Center
    ror: https://ror.org/05sd8tv96
Submitter:
  name: Raül Sirvent
  e-mail: Raul.Sirvent@bsc.es
  orcid: https://orcid.org/0000-0003-0606-2512
  organisation_name: Barcelona Supercomputing Center
  ror: https://ror.org/05sd8tv96



Run your COMPSs application

• runcompss -p

• enqueue_compss -p

• pycompss run -p

• Either -p or --provenance
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• Post-process automatically triggered after the 
end of the application

• Log and time statistics are provided
• grep PROVENANCE

• If provenance generation fails for any reason:
• Still possible to invoke it manually (commands 

provided in the output log)

...
PROVENANCE | RO-Crate writing to disk TIME: 0.01987314224243164 s
PROVENANCE | Workflow Provenance generation TOTAL EXECUTION TIME: 0.04113888740539551 s
PROVENANCE | COMPSs Workflow Provenance successfully generated in sub-folder:
    COMPSs_RO-Crate_d64966ac-fe34-463a-88fc-f97047c21a99/
PROVENANCE | ENDED WORKFLOW PROVENANCE SCRIPT



The Crate (resulting folder)

• application_sources/

• dataset/

• complete_graph.svg

• App_Profile.json

• compss_submission_command_line.txt

• ro-crate-metadata.json
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|-- App_Profile.json
|-- application_sources
|   |-- Readme
|   |-- pom.xml
|   |-- src
|   |   `-- main
|   |       `-- java
|   |           `-- matmul
|   |               |-- arrays
|   |               |   |-- …
|   |               |   `-- Matmul.java
|   |               |-- files
|   |               |   |-- Block.class
|   |               |   |-- Block.java
|   |               |   |-- Matmul.class
|   |               |   |-- Matmul.java
|   |               |   |-- MatmulImpl.class
|   |               |   |-- MatmulImpl.java
|   |               |   |-- MatmulItf.class
|   |               |   `-- MatmulItf.java
|   |               `-- objects
|   |                   |-- …
|   |                   `-- Matmul.java
|   `-- xml
|       |-- project.xml
|       `-- resources.xml
|-- complete_graph.svg
|-- compss_submission_command_line.txt
|-- dataset
|   |-- …
|   `-- C.1.1
|-- ro-crate-info.yaml
`-- ro-crate-metadata.json

10 directories, 41 files



Publish your results with WorkflowHub

• zip –r crate.zip COMPSs_RO-Crate_[uuid]/

• Login to WorfklowHub

• Create -> Workflow
• Upload/Import Workflow RO-Crate tab -> Local file (crate.zip)

• Click Register

• Review automatically obtained information

• Select the visibility of your workflow in the Sharing tab (for both general 
public, and for teams selected)

• Click Register again



Cite your results with WorkflowHub

• Freeze your workflow version
• Overview tab -> Citation box -> Freeze version

• Actions menu -> Freeze version

• Generate DOI
• IMPORTANT: make sure your version is final

• Citation box -> Generate a DOI

• Actions menu -> Generate a DOI

• Select Mint DOI

• The final generated DOI for the workflow results can be found in the Citation box
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https://doi.org/10.48546/workflowhub.workflow.484.1

https://doi.org/10.48546/workflowhub.workflow.484.1


SC Conference Reproducibility Initiative

• Artifacts Available
• Artifacts used in the research (including data and code) are permanently archived in a 

public repository that assigns a global identifier and guarantees persistence, and are 
made available via standard open licenses that maximize artifact availability

• Artifacts Evaluated-Functional
• Documentation: Are the artifacts sufficiently documented to enable them to be exercised

by readers of the paper?
• Completeness: Do the submitted artifacts include all of the key components described in 

the paper?
• Exercisability: Do the submitted artifacts include the scripts and data needed to run the 

experiments described in the paper, and can the software be successfully executed?

• Results Replicated
• Reproduce Behavior: determine the equivalent or approximate behavior on available 

hardware
• Reproduce the Central Results and Claims of the Paper
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Inspecting registered 
metadata



Inspecting registered metadata
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"@id": "application_sources/matmul_files.py",
"@type": ["File", "SoftwareSourceCode", "ComputationalWorkflow"],
"contentSize": 1948,
"description": "Main file of the COMPSs workflow source files",
"encodingFormat": "text/plain",
"image": {"@id": "complete_graph.svg"},
"name": "matmul_files.py",
"programmingLanguage": {"@id": "#compss"}

"@id": "complete_graph.svg",
"@type": ["File", "ImageObject", "WorkflowSketch"],
"about": {"@id": "application_sources/matmul_files.py"},
"contentSize": 6681,
"description": "The graph diagram of the workflow, automatically generated by COMPSs runtime",
"encodingFormat": [[”image/svg+xml",{"@id": "https://www.nationalarchives.gov.uk/PRONOM/fmt/92"}]],
"name": "complete_graph.svg"

        

        

         

                

        
"@id": "#compss",
"@type": "ComputerLanguage",
"alternateName": "COMPSs",
"citation": "https://doi.org/10.1007/s10723-

013-9272-5",
"name": "COMPSs Programming Model",
"url": "http://compss.bsc.es/",
"version": "3.3"



Inspecting registered metadata
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"@id": "compss_submission_command_line.txt",
"@type": "File",
"contentSize": 709,
"description": "COMPSs command line execution 

command (runcompss), including flags and 
parameters passed",

"encodingFormat": "text/plain",
"name": "compss_submission_command_line.txt"

"@id": "App_Profile.json",
"@type": "File",
"contentSize": 247,
"description": "COMPSs application Tasks profile",
"encodingFormat": ["application/json",{"@id":"https://www.nationalarchives.gov.uk/PRONOM/fmt/817"}],
"name": "App_Profile.json"

"@id": 
"application_sources/matmul_tasks.py",

"@type": ["File", "SoftwareSourceCode"]
"contentSize": 1549,
"description": "Auxiliary File",
"encodingFormat": "text/plain",
"name": "matmul_tasks.py"

Auxiliary Files
Command line arguments

COMPSs Task Profiling



Inspecting registered metadata
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"@id": "file://s02r2b26-ib0/home/bsc19/bsc19057/DP_Test_3_demo/config/energy.selection"

Hostname Location path in hostname 

"@id": "dataset/A.0.0",
"@type": "File",
"contentSize": 16,
"dateModified": "2023-09-07T09:20:20",
"name": "A.0.0",
"sdDatePublished": "2023-09-07T09:20:27+00:00"

Persistent Data

"@id": "file://s07r1b33-ib0/home/bsc19/bsc19057/DP_Test_3_demo/dataset/133l.pdb",
"@type": "File",
"contentSize": 116154,
"dateModified": "2022-04-20T13:20:58",
"name": ”133l.pdb",
"sdDatePublished": "2022-10-18T08:03:08+00:00"

Non-Persistent Data



Inspecting registered metadata

26

"@id": "#COMPSs_Workflow_Run_Crate_marenostrum4_SLURM_JOB_ID_30132875",
"@type": "CreateAction",
"actionStatus": {"@id": "http://schema.org/CompletedActionStatus"},
"agent": {"@id": "https://orcid.org/0000-0003-0606-2512"},
"description": "Linux s01r2b48 4.4.59-92.20-default #1 SMP Wed May 31 14:05:24 UTC 2017 (8cd473d) 

x86_64 x86_64 x86_64 GNU/Linux SLURM_JOB_NAME=matmul-DP COMPSS_PYTHON_VERSION=3.9.10 
SLURM_JOB_QOS=debug SLURM_MEM_PER_CPU=1880 COMPSS_BINDINGS_DEBUG=1 SLURM_JOB_ID=30132875 
SLURM_JOB_USER=bsc19057 COMPSS_HOME=/apps/COMPSs/3.2/ SLURM_JOB_UID=2952 
SLURM_SUBMIT_DIR=/gpfs/home/bsc19/bsc19057/COMPSs-DP SLURM_JOB_NODELIST=s01r2b48 
SLURM_JOB_GID=2950 SLURM_JOB_CPUS_PER_NODE=48 COMPSS_MPIRUN_TYPE=impi SLURM_SUBMIT_HOST=login3 
SLURM_JOB_PARTITION=main SLURM_JOB_ACCOUNT=bsc19 SLURM_JOB_NUM_NODES=1 
COMPSS_MASTER_NODE=s01r2b48 COMPSS_WORKER_NODES=",

"endTime": "2023-09-07T09:46:26+00:00",
"instrument": {"@id": "application_sources/matmul_files.py"},
"name": "COMPSs matmul_files.py execution at marenostrum4 with JOB_ID 30132875",

           
        

           
        

CreateAction



Inspecting registered metadata
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"object": [{"@id": "dataset/A.0.0"}, {"@id": "dataset/A.0.1"}, {"@id": "dataset/A.1.0"}, 
{"@id": "dataset/A.1.1"}, {"@id": "dataset/B.0.0"}, {"@id": "dataset/B.0.1"}, {"@id": 
"dataset/B.1.0"}, {"@id": "dataset/B.1.1"}, {"@id": "dataset/C.0.0"}, {"@id": 
"dataset/C.0.1"}, {"@id": "dataset/C.1.0"}, {"@id": "dataset/C.1.1"}],

"result": [{"@id": "dataset/C.0.0"}, {"@id": "dataset/C.0.1"}, {"@id": "dataset/C.1.0"}, 
{"@id": "dataset/C.1.1"}, {"@id": "./"}],

"subjectOf": ["https://userportal.bsc.es/"]

           
        

           
        

CreateAction



Conclusions

• FAIR HPC workflows combining COMPSs + RO-Crate + WorkflowHub
• WMS that use RO-Crate (Galaxy, Nextflow, Streamflow, Sapporo, Autosubmit)

• Paper* experiments show
• We provide automatic provenance registration (whenever possible)

• We are efficient (no run time overhead appreciated)

• We can scale and deal with large workflows (shown by use cases)

• Future Work

• Integration with: WfExS, ROHub (RO-Crate)

• Automatic reproducibility with the PyCOMPSs CLI

• Governance and Knowledge extraction
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*Raül Sirvent et al. “Automatic, Efficient and Scalable Provenance Registration for FAIR HPC Workflows” In: 
2022 IEEE/ACM Workshop on Workflows in Support of Large-Scale Science (WORKS). IEEE, 2022. p. 1-9.



Hands-on Exercises



Preliminary steps
• Find help in the Manual:

• COMPSs ReadTheDocs -> Tools -> Workflow Provenance

• Create your WorkflowHub account
• Open https://workflowhub.eu/
• Click “Register”

• “Log in using GitHub” or
• Register with your e-mail

• Mandatory: First name, Last name, e-mail. Recommended: ORCID
• Confirm registration with received e-mail

• Join “COMPSs Tutorials” team (“eFlows4HPC” Space)
• “Join a Team”

• Search for ”COMPSs Tutorials”
• Organization:

• Search for your institution not only by acronym, also with full words
• Can try also: Browse -> Organizations -> Country (filter)
• If not found: Create -> Organization

• List of commands used in the Exercises: 
/apps/COMPSs/TUTORIALS/2024_BSC_TRAINING_COMPSS_MN4/PROVENANCE_COMMANDS.txt

30

https://workflowhub.eu/


Exercise 1: Publish a Workflow Run

• Choose a COMPSs example from the ones you have previously run in the 
Cluster Hands-on session
• Easy: Lysozyme in Water (any version) (mandatory dataset_small/)

• Medium: Cholesky (can play with SIZE and BSIZE), K-means, Clustering 
Comparison

• Hard: Wordcount (both reduce and merge)

• Create/edit ro-crate-info.yaml
• cp /apps/COMPSs/TUTORIALS/2024_BSC_TRAINING_COMPSS_MN4/ro-crate-

info.yaml .

• Establish yourself as ‘Submitter’
• If you don’t have an ORCID, just remove the ‘Submitter’ section, the Author will be 

considered the Submitter
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Exercise 1: Publish a Workflow Run 

32

COMPSs Workflow Information:
name: Lysozyme in water sample

  description: Lysozyme in water sample COMPSs application
  license: Apache-2.0
  sources: [src/, launch.sh]
  data_persistence: True
Authors:
  - name: Rosa M. Badia
    e-mail: Rosa.M.Badia@bsc.es
    orcid: https://orcid.org/0000-0003-2941-5499
    organisation_name: Barcelona Supercomputing Center
    ror: https://ror.org/05sd8tv96
Submitter:
  name: Raül Sirvent
  e-mail: Raul.Sirvent@bsc.es
  orcid: https://orcid.org/0000-0003-0606-2512
  organisation_name: Barcelona Supercomputing Center
  ror: https://ror.org/05sd8tv96

• ro-crate-info.yaml

Minimal information

Odd usernames: True
Even usernames: False

Hint for Wordcount: look for 
the optional parameters of 
ro-crate-info.yaml in the 
manual



Exercise 1: Publish a Workflow Run
• Edit launch.sh script: add “--provenance” option

• Submit: Example ./launch.sh 2 10 false $(pwd)/config/ $(pwd)/dataset_small/ 
$(pwd)/output/
• Change number of nodes, or other parameters

• Lysozyme in water: launch.sh, launch_full.sh, launch_full_no_mpi.sh or launch_full_singularity.sh
• Cholesky: SIZE, BSIZE
• Wordcount: launch.sh or launch_merge.sh

• Check time and result of provenance generation (compss_XXXX.out)
• What was the longest time during generation?

• Zip and upload RO-Crate
• zip –r my_app_crate.zip COMPSs_RO-Crate_XXX/

• Copy the file to your laptop. Run, from your laptop:
• scp nct01XXX@mn3.bsc.es:~/my_app_folder/my_app_crate.zip ~/Desktop/

• Go to WorkflowHub -> Contribute
• Upload/Import Workflow RO-Crate -> Select local file
• Briefly inspect imported metadata
• Select Team, check Sharing permissions, click Register
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Exercise 1: Publish a Workflow Run

• DOI generation and reference (DON’T DO THIS NOW!!!!!!)
• Freeze version

• Generate a DOI

• Share the obtained DOI (e.g. use it as a reference in a paper)

• Example: ROM Workflow DOI generated live
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Exercise 2: Inspect a previous published execution 
• Find your own published workflow

• My Items -> Workflows

• Can you understand the metadata (ro-crate-metadata.json)? Ask, if not
• Identify the 3 main parts of the JSON: Root Data Entity, Data Entities, Contextual Entities

• ro-crate-metadata.json interesting keywords: mainEntity, ComputationalWorkflow, WorkflowSketch, 
#compss, CreateAction (object, result)

• Observe the CreateAction in detail

• Questionnaire:
• Who ran this code? Where? When? With which COMPSs version?

• What is the name of the main application source file?

• What were the inputs and outputs used or generated in this workflow run?

• Can you say how many cluster nodes were used for the run? (Hint: 3 locations)

• Where can you find detailed profiling of the application? (Hint: 2 locations)

• Are the data assets included in the package?

• What was the command used to run this workflow? What were the parameters passed to the application?

• Navigate the workflow diagram
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Exercise 2 (extra): Inspect a previous published execution 
• Browse for other COMPSs Workflows at WorkflowHub

• Browse -> Workflows
• Workflow type: filter by “COMPSs”
• Team: filter by “COMPSs Tutorials” (or don’t)

• Inspect the metadata (keywords: mainEntity, ComputationalWorkflow, 
WorkflowSketch, #compss, CreateAction (object, result))

• Questionnaire:
• Who ran this code? Where? When? With which COMPSs version?
• What is the name of the main application source file?
• What were the inputs and outputs used or generated in this workflow run?
• Can you say how many cluster nodes were used for the run? (Hint: 3 locations)
• Where can you find detailed profiling of the application? (Hint: 2 locations)
• Are the data assets included in the package?
• What was the command used to run this workflow? What were the parameters passed to the 

application?
• Navigate the workflow diagram
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Exercise 3: Repeat Exercises 1 and 2 with 
data_persistence flipped 

• If your data_persistence was True, set it to False

• If it was False, set it to True

• Re-execute your application

• Publish your new run to WorkflowHub

• Compare the runs
• dataset/ folder???

• ro-crate-metadata.json -> check data assets
• Search for a specific file you know

• Or look for “CreateAction”

37



Exercise 4: Reproduce an execution from another 
participant in the tutorial

• Browse for COMPSs Workflows at WorkflowHub
• Browse -> Workflows

• Workflow type: filter by “COMPSs”
• Team: filter by “COMPSs Tutorials”

• Select preferably one with data_persistence=True (i.e. has a dataset/ folder)

• Click the workflow, click “Download RO-Crate”

• Create a directory at the supercomputer
• mkdir ~/reproduced_app/

• Copy the file from your laptop to the supercomputer
• scp ~/Desktop/workflow-XXX-X.crate.zip

nct01XXX@mn3.bsc.es:~/reproduced_app/your_app_crate.zip

• At the supercomputer, in the ~/reproduced_app/ folder
• unzip workflow-XXX-X.crate.zip

38



Exercise 4: Reproduce an execution from another 
participant in the tutorial

• Understand inputs/outputs location (ro-crate-metadata.json)
• Check CreateAction -> object and result

• Example with dataset/
• Inputs:

• dataset/lysozyme_in_water/config/

• dataset/lysozyme_in_water/dataset_small/

• Outputs:
• dataset/lysozyme_in_water/output/

• Example without dataset/
• Inputs:

• file://s02r1b59-ib0/home/nct01/nct00XXX/lysozyme_in_water/config/

• file://s02r1b59-ib0/home/nct01/nct00XXX/lysozyme_in_water/dataset_small/

• Outputs
• file://s02r1b59-ib0/home/nct01/nct00XXX/lysozyme_in_water/output/

• Check parameters used in the run (compss_submission_command_line.txt)
• Specifically, the num_nodes parameter
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Exercise 4: Reproduce an execution from another 
participant in the tutorial

• CREATE A NEW OUTPUT FOLDER (avoid overwriting the recorded one)
• cd application_sources/
• mkdir new_output/

• Resubmit the application with the correct paths:
• chmod ugo+x launch.sh
• Provenance recording can be deactivated for this run (remove --provenance)
• Persistence example:

• ./launch.sh 2 10 false ../dataset/lysozyme_in_water/config/ ../dataset/lysozyme_in_water/dataset_small/ 
new_output/

• Non-persistence example:
• ./launch.sh 2 10 false /home/nct01/nct00XXX/lysozyme_in_water/config/ 

/home/nct01/nct00XXX/lysozyme_in_water/dataset_small new_output/

• Compare results:
• diff new_output/ ../dataset/lysozyme_in_water/output/
• diff new_output/ /home/nct01/nct00XXX/lysozyme_in_water/output
• Are they identical? Why?
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Thank you for
your attention

https://compss-doc.readthedocs.io/en/latest/Sections/05_Tools/04_Workflow_Provenance.html

Raul.Sirvent@bsc.es

https://compss-doc.readthedocs.io/en/latest/Sections/05_Tools/04_Workflow_Provenance.html
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