
Programming Distributed 
Computing Platforms 
with COMPSs

Rosa M. Badia, Javier Conejero, Jorge Ejarque, Daniele 
Lezzi, Francesc Lordan, Raül Sirvent, Cristian Tatu, 

Fernando Vazquez

Workflows & Distributed Computing Group

30-31/01/2024 Barcelona



Outline

Day 1
• Roundtable (9:30 – 10:00): Welcome and round table 

• Session 1 (10:00 – 10:30): Introduction to COMPSs

• Session 2 (10:30-11:15): PyCOMPSs: Writing Python applications

• Coffee break (11:15 – 11:45)

• Session 3 (11:45 a 13.00) Python Hands-on using Jupyter notebooks

• Lunch break (13:00-14:30)

• Session 4 (14:30 - 15:00) Machine learning with dislib

• Session 5 (15:00 -16:30): Hands-on with dislib

• SLIDES
• http://compss.bsc.es/releases/tutorials/tutorial-PATC_2024/

http://compss.bsc.es/releases/tutorials/tutorial-PATC_2024/


Outline
Day 2

• Session 6 (9:30-10:15): Java & C++
• Writing Java applications

• Java Hands-on + debug

• C++ Syntax

• Session 7: (10:15-10:45) Cluster Hands-on (MareNostrum) (Settings)

• Coffee break (10:45 – 11:15)

• Session 8 (11:15-13:00): Cluster Hands-on (MareNostrum)

• Lunch break (13:00 – 14:30)

• Session 9 (14:30-15:30): Provenance with PyCOMPSs (hands-on 
included)

• Session 10 (15:30-16:30): Running COMPSs with containers 
(Demo/hands-on included)

• Session 11 (16:30-16:45) COMPSs Installation & Final Notes



INTRODUCTION



Motivation

• New complex architectures constantly emerging
• With their own way of programming them

• Fine grain: e.g. Programming models and APIs to run with 
GPUs, NVMs (Non-Volatile Memories)

• Coarse grain: e.g. APIs to deploy in Clouds

• Difficult for programmers
• Higher learning curve / Time To Market (TTM)
• What about non computer scientists???

• Difficult to understand what is going on during execution
• Was it fast? Could it be even faster? Am I paying more than I 

should? (Efficiency)

• Tune your application for each architecture (or cluster)
• E.g. partitioning data among nodes



Motivation
• Resources that appear and disappear

• How to dynamically add/remove nodes to the infrastructure 

• Heterogeneity 
• Different HW characteristics (performance, memory, etc)
• Different architectures -> compilation issues  

• Network 
• Different types of networks 
• Instability

• Trust and Security

• Power constraints from the devices 
in the edge 

• Data & Storage

Sensors
Instruments
Actuators

HPC 
Exascale computing
Cloud

Edge devices

Fog devices



Motivation

• Create tools that make developers’ life easier
• Allow developers to focus on their problem

• Intermediate layer: let the difficult parts to those tools
• Act on behalf of the user

• Distribute the work through resources

• Deal with architecture specifics

• Automatically improve performance

• Tools for visualization
• Monitoring

• Performance analysis

• Integration of computational workloads, with machine learning 
and data analytics



BSC vision on programming models 

8

General purpose
Task based

Single address space

Intelligent runtime, 
parallelization, 

distribution,
interoperability

Program logic
independent of 

computing platform
Applications

Power to the runtime

PM: High-level, clean, abstract interface

API



BSC vision on programming models 

Average task Granularity:

100 us – 10 ms                                                           10 ms  - 1 day

Language bindings:

C, C++, FORTRAN                                                     Java, C/C++, Python

Dependences:

Memory address space                                               Files, Objects

Intranode Distributed

StarSs
OmpSs COMPSs

@ SMP @ GPU @ FPGA @ Cluster @ Grids @ Clouds



Programming with COMPSs

• Sequential programming

• General purpose programming language + 
annotations/hints
• To identify tasks and directionality of data

• Task based: task is the unit of work

• Simple linear address space

• Builds a task graph at runtime that express 
potential concurrency
• Implicit workflow

• Exploitation of parallelism
• … and of distant parallelism

• Agnostic of computing 
platform
• Enabled by the runtime 

for clusters, clouds and 
grids 

@task(c=INOUT)

def multiply(a, b, c):

 c += a*b

initialize_variables()

startMulTime = time.time()

for i in range(MSIZE):

for j in range(MSIZE):

      for k in range(MSIZE):

         multiply (A[i][k], B[k][j], C[i][j])

compss_barrier()

mulTime = time.time() - startMulTime



Programming with COMPSs
• Support for other types of parallelism 

• Threaded tasks (I.e., MKL kernels) 

• MPI applications -> tasks that involve several nodes

• Integration with BSC OmpSs

• Streaming tasks for data flow executions

• Support to Failure Management

• Parallel Machine Learning with dislib

• Available in MareNostrum and other supercomputers in Europe, in 
the EGI Federated Cloud and in Chameleon Cloud



COMPSs runtime
• PyCOMPSs/COMPSs applications executed in distributed mode following the 

master-worker paradigm

• Sequential execution starts in master node

• Tasks are offloaded to worker nodes 

• All data scheduling decisions and data transfers are performed by the runtime

Task Dependecy Graph

Computing infrastructure

COMPSs 

Runtime Resource Mgmt.

Task Execution

Scheduling
Task 
Analysis

Data Mgmt.

Monitoring

Python
binding

Files, 
objects

Tasks

Annotated 
code

Custom Loader

Task 
interception

Python

C/C++

Java



Some interesting features

• Task constraints: enable to define HW or SW requirements

• Linking with other programming models: 

• Task failure management 

@constraint (MemorySize=6.0, 

ProcessorPerformance=“5000”)

@task (c=INOUT)

def myfunc(a, b, c):

    ...

@constraint (computingUnits= "248")

@mpi (runner="mpirun", computingNodes= ”16”, ...)         

@task (returns=int, stdOutFile=FILE_OUT_STDOUT, 

...) def nems(stdOutFile, stdErrFile):

    pass

@task(file_path=FILE_INOUT, 

on_failure='CANCEL_SUCCESSORS')

def task(file_path):

    ...

    if cond :

        raise Exception()



Integration with Machine Learning

• Thanks to the Python interface, the integration
with ML packages is smooth: 
• Tensorflow, PyTorch, ... 

• Tiramisu: transfer learning framework
Tensorflow + PyCOMPSs + dataClay

• dislib: Collection of machine learning algorithms developed on top of 
PyCOMPSs 
• Unified interface, inspired in scikit-learn (fit-predict)

• Unified data acquisition methods and using 
an independent distributed data 
representation

• Parallelism transparent to the user –
PyCOMPSs parallelism hidden 

• Open source, available to the community 
dislib.bsc.es



PyCOMPSs development environment

• Runtime monitor

• Paraver traces 

• Jupyter-notebooks integration



Conclusions

Applications 

Resource Management

Execution & Data management

DataClay/Hecuba
COMPSs 
Runtime

Unicore

Edge Cloud Supercomputers

SLURM Singularity

HPC, DA & ML Composition

COMPSs Programming Model

Data Analytics & Machine learning 

dislib

QBeast

Docker

• COMPSs provides a workflow environment 
that enables the integration of HPC 
simulation and modelling with big data 
analytics and machine learning 

• Support for dynamic workflows that can 
change their behaviour during the 
execution

• Support for dynamic resource 
management depending on the actual 
workload needs

• Support for data-streaming enabling the 
combination of task-flow and data-flow in 
the same workflow

• Support for persistent storage beyond 
traditional file systems.

Problem 
definition

Dynamic 
Workflow 
Definition 

Efficient 
Distributed 
Execution



Projects where COMPSs is used/developed

CAELESTIS HP2C-DT

COLMENA



The WDC team

http://compss.bsc.es


	Slide 1: Programming Distributed Computing Platforms with COMPSs
	Slide 2: Outline
	Slide 3: Outline
	Slide 4: Introduction
	Slide 5: Motivation
	Slide 6
	Slide 7: Motivation
	Slide 8: BSC vision on programming models 
	Slide 9: BSC vision on programming models 
	Slide 10: Programming with COMPSs
	Slide 11: Programming with COMPSs
	Slide 12: COMPSs runtime
	Slide 13: Some interesting features
	Slide 14: Integration with Machine Learning
	Slide 15: PyCOMPSs development environment
	Slide 16
	Slide 17: Projects where COMPSs is used/developed
	Slide 18: The WDC team

