Barcelona

Supercomputing EXCELENCIA
SEVERO
Center OCHOA

Centro Nacional de Supercomputacion b

Programming Distributed
Computing Platforms
with COMPSs

Rosa M. Badia, Javier Conejero, Jorge Ejarque, Daniele
Lezzi, Francesc Lordan, Raul Sirvent, Cristian Tatu,
Fernando Vazquez

Workflows & Distributed Computing Group

Barcelona

Outline

Day 1

Roundtable (9:30 — 10:00): Welcome and round table

Session 1 (10:00 — 10:30): Introduction to COMPSs

Session 2 (10:30-11:15): PyCOMPSs: Writing Python applications
Coffee break (11:15 — 11:45)

Session 3 (11:45 a 13.00) Python Hands-on using Jupyter notebooks
Lunch break (13:00-14:30)

Session 4 (14:30 - 15:00) Machine learning with dislib

Session 5 (15:00 -16:30): Hands-on with dislib

SLIDES
e http://compss.bsc.es/releases/tutorials/tutorial-PATC 2024/

http://compss.bsc.es/releases/tutorials/tutorial-PATC_2024/

Outline

Day 2
* Session 6 (9:30-10:15): Java & C++

* Writing Java applications
* Java Hands-on + debug
¢ C++ Syntax

e Session 7:(10:15-10:45) Cluster Hands-on (MareNostrum) (Settings)
e Coffee break (10:45 —11:15)

e Session 8 (11:15-13:00): Cluster Hands-on (MareNostrum)

e Lunch break (13:00 — 14:30)

e Session 9 (14:30-15:30): Provenance with PyCOMPSs (hands-on
included)

e Session 10 (15:30-16:30): Running COMPSs with containers
(Demo/hands-on included)

e Session 11 (16:30-16:45) COMPSs Installation & Final Notes

Motivation

* New complex architectures constantly emerging

* With their own way of programming them

* Fine grain: e.g. Programming models and APIs to run with
GPUs, NVMs (Non-Volatile Memories)

* Coarse grain: e.g. APIs to deploy in Clouds
* Difficult for programmers
* Higher learning curve / Time To Market (TTM)
* What about non computer scientists???
* Difficult to understand what is going on during execution

* Was it fast? Could it be even faster? Am | paying more than |
should? (Efficiency)

* Tune your application for each architecture (or cluster)
* E.g. partitioning data among nodes

Motivation

Resources that appear and disappear
* How to dynamically add/remove nodes to the infrastructure

Heterogeneity
* Different HW characteristics (performance, memory, etc)
* Different architectures -> compilation issues

Network
 Different types of networks
* |Instability

Trust and Security

: , HPC

Power constraints from the devices n) evety .

in the edge Exascale computing
Cloud

Data & Storage

éia Sensors

Instruments
Actuators

Fog devices

e

Edge devices

Bar
Sup
Cer
Cenl

Motivation

* Create tools that make developers’ life easier
* Allow developers to focus on their problem

* Intermediate layer: let the difficult parts to those tools
Act on behalf of the user
Distribute the work through resources
Deal with architecture specifics
Automatically improve performance
* Tools for visualization
* Monitoring

* Performance analysis

* Integration of computational workloads, with machine learning
and data analytics

BSC vision on programming models

Program logic
independent of
computing platform

Applications

PM: High-level, clean, abstract interface
General purpose

Task based
Single address space

Power to the runtime

Intelligent runtime,
parallelization,
distribution,
interoperability

Bareelona
MErmmpuﬁn’

(=

Curlr\u."lu sigrial o Suparcamoulacitn

BSC vision on programming models

ompSs

— b

@ SMP @ GPU

@ FPGA

SOotarsSs<

COMPSs

@ Cluster @ Grids @ Clouds

Average task Granularity:

100 us — 10 ms 10 ms -1 day
Dependences:
Memory address space Files, Objects

Language bindings:
C, C++, FORTRAN

Java, C/C++, Python

Intranode

Distributed

Barcelana

Supercomputing
Center
Cendre Masitnal e Suparcamsulaciin

Programming with COMPSs

Sequential programming

General purpose programming language +
annotations/hints

* To identify tasks and directionality of data
Task based: task is the unit of work
Simple linear address space

@task (c=INOUT)

Builds a task graph at runtime that express def multiply(a, b, ©):
potential concurrency ¢ f=
® |mp|ICIt WOI‘kﬂOW initialize variables ()
. . . startMulTime = time.time ()
Exploitation of parallelism for i in range (MSIZE) :
* ... and of distant parallelism e b im e i) -
. . multiply (A[i][k], B[k][]],
AgnOStIC Of Computlng compss_barrierl())y . : ’
platfor‘m mulTime = time.time () - startMulTime

* Enabled by the runtime

for clusters, clouds and

grids

Barcelona

Supercomputing

Center

Cendre Masitnal e Suparcamsulaciin

Programming with COMPSs

* Support for other types of parallelism
* Threaded tasks (l.e., MKL kernels)
* MPI applications -> tasks that involve several nodes
* Integration with BSC OmpSs
» Streaming tasks for data flow executions

e Support to Failure Management
* Parallel Machine Learning with dislib

* Available in MareNostrum and other supercomputers in Europe, in
the EGI Federated Cloud and in Chameleon Cloud

Python C/C++
Java

I Binding Commons I |
e O &

Clusters Clouds docker ME

m AYAYA
VAVAVAV
O Wy

<
3
2
%

m

oS

COMPSs runtime

* PyCOMPSs/COMPSs applications executed in distributed mode following the
master-worker paradigm

* Sequential execution starts in master node
* Tasks are offloaded to worker nodes

 All data scheduling decisions and data transfers are performed by the runtime

Computing infrastructure

Task Dependecy Graph

Annotated
code

iy

Python
CICH++
Custom Loader

Task
interception

COMPSs
Runtime

Monitoring Resource Mgmt.

Task Execution objects

Data Mgmt.

Python

binding Task

Analysis

Scheduling

Cente
Cendre Masitnal e Suparcamsulaciin

Some interesting features

e Task constraints: enable to define HW or SW requirements

@Qconstraint (MemorySize=6.0,
ProcessorPerformance=%"5000")
@task (c=INOUT)

def myfunc(a, b, c):

 Linking with other programming models:

@constraint (computingUnits= "248")
@mpi (runner="mpirun", computingNodes= ”16”, ...)
@task (returns=int, stdOutFile=FILE OUT_STDOUT,
...) def nems (stdOutFile, stdErrFile):

pass

* Task failure management

(-

Barealona
Supercomputing
Center

Cinlrg Naginal de Suparcampuld

Qtask (file_path=FILE_INOUT,
on_failure='CANCEL SUCCESSORS')
def task(file path):

if cond :
raise Exception ()

[n]ea]

Integration with Machine Learning

* Thanks to the Python interface, the integration
with ML packages is smooth:
e Tensorflow, PyTorch, ...
s

L . @ C |l @ C

* Tiramisu: transfer learning framework |
Tensorflow + PyCOMPSs + dataClay | ' :
1

e dislib: Collection of machine learning algorithms developed on top of
PyCOMPSS K-Means DBSCAN Gaussian mixture
* Unified interface, inspired in scikit-learn (fit-predic S

* Unified data acquisition methods and using @
an independent distributed data e
representation

e Parallelism transparent to the user — 'ﬁ\ |

PYCOMPSs paralllsprigden .. @) DISUIB &,

* Open source, available to the comm *.

Barcelona

Supercomputing

Center

Cnlrg Nagiona! de Suparcampulanin

PyCOMPSs development environment

COMPSs Monitor - Mozilla Firefox

COMPSs Moni

* Runtime monitor € oo z

Barcelona
Supercomputing COMPSS MONITOR
C —

° P a ra Ve r t ra C e S Ct:?g:i)zwona/ de Supercomputacion

Applications < | Resourcesinformation | Tasksinformation | Currenttasksgraph | Complele tasks graph | Loadchart | Runfimelog | Execulion Information | { »

*B 9 ¢ A O =

FAQ || Configuration || Logout

O Interactive_01

* Jupyter-notebooks integration ...

e # ([woa) >
@ Interactive_03 . ¥ & -
. .
-
Reiresh .
6 & o686 & 606 ® soe & &
% & . & v & . & Download
. -)
- -
- Color Name

Il cluster_points_partial(in|

L] L] Compss Tasks @ cholesky.py_compss_trace 1504 2666815 .prv

partial_sum()interactivel

R
@ see ® vee ® BE Il reduceCentersTask()inter

Home

localhost: < wE 93 A S =EF
- Jupyter kmeans-cool Last checkpoint: a day ago (autosaved) A
File Edit View nsert Cell Kemel Help |Pylhcr 20
+ % B A ¥ M B C coke -| = cermooiar
data.append(d) B
return np.array(data)[:numv]
else:

return [np.random.random(dim) for _ in range(numv)]

What [Where Timing SRR

In [7]: @task(returns=dict)

- createBlock def cluster points partial(XP, mu, ind):
dic = {}
potrf for x in enumerate(XP):
g bestmukey = min([(i[€], np.linalg.norm(x[1] - mu[i[@]])) for i in enumerate(mu)], key=laml
I soive_triangular if bestmukey not in dic:

dic[bestmukey] = [x[e] + ind]
I gemm else: Y

dic[bestmukey].append(x[0] + ind)
return dic

Task appended.

In [8]: @task(returns=dict)
def partial sum(XP, clusters, ind):
p = [{i, [(XP[j - ind]) for j in clusters[i]]) for i in clusters]

dic = {}

for i, 1 in p:
Bareelona dic[i] = (len(l), np.sum(l, axis=0))
Supercomputing return dic
Center Task appended.

Cerudne Masitna) o Supaca

Conclusions

COMPSs provides a workflow environment
that enables the integration of HPC

simulation and modelling with big data Data Analytics & Machine learning
analytics and machine learning
Support for dynamic workflows that can

change their behaviour during the

Problem
definition

execution . HPC, DA & ML Composition ’
Support for dynamic resource

workload needs ‘Lynamic
Support for data-streaming enabling the Execution & Data management orkflow
combination of task-flow and data-flow in efinition

COMPSs
Runtime

the same workflow DataClay/Hecuba QBeast

Support for persistent storage beyond Efficient
traditional file systems. Distributed
Execution

Resource Management

Bareelona
Supnmnmpuﬂng

Cerulng ."JuLuflu.l de Suparcamsulacion

@

Projects where COMPSs is used/developed

’ - =
- SPRINT¢
GO SPRIN:

CAELESTIS HP2C-DT
©T%:© COLMENA

. T ; <.t ﬁ Per gePliiEia;scale
@ ?-° o’%"s = g [kg MEd Excellence in

Personalised

& CO E Medicine

The WDC team

- :

£ ‘ @ =6 (&3 3

‘ ? W N v g
dle6 d14 dl2 /d10 0

(3

	Slide 1: Programming Distributed Computing Platforms with COMPSs
	Slide 2: Outline
	Slide 3: Outline
	Slide 4: Introduction
	Slide 5: Motivation
	Slide 6
	Slide 7: Motivation
	Slide 8: BSC vision on programming models
	Slide 9: BSC vision on programming models
	Slide 10: Programming with COMPSs
	Slide 11: Programming with COMPSs
	Slide 12: COMPSs runtime
	Slide 13: Some interesting features
	Slide 14: Integration with Machine Learning
	Slide 15: PyCOMPSs development environment
	Slide 16
	Slide 17: Projects where COMPSs is used/developed
	Slide 18: The WDC team

